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Fundamentals of Vibration Analysis

Introduction : Vibrations occur in many aspects of our life. For example, in the human body, there are
low-frequency oscillations of the lungs and the heart, high-frequency oscillations of the ear, oscillations
of the larynx as one speaks, and oscillations induced by rhythmical body motions such as walking,
jumping, and dancing.

Many man-made systems also experience or produce vibrations. For example, any unbalance in machines
with rotating parts such as fans, ventilators, centrifugal separators, washing machines, lathes, centrifugal
pumps, rotary presses, and turbines, can cause vibrations. For these machines, vibrations are generally
undesirable. Buildings and structures can experience vibrations due to operating machinery; passing
vehicular, air, and rail traffic; or natural phenomena such as earthquakes and winds. Pedestrian bridges
and floors in buildings also experience vibrations due to human movement on them. In structural systems,
the fluctuating stresses due to vibrations can result in fatigue failure. Vibrations are also undesirable when
performing measurements with precision instruments such as an electron microscope and when
abricating micro electro mechanical systems. In vehicle design, noise due to vibrating panels must be
reduced. Vibrations, which can be responsible for unpleasant sounds called noise, are also responsible for
the music that we hear. Vibrations are also beneficial for many purposes such as atomic clocks that are
based on atomic vibrations, vibratory parts feeders, paint mixers, ultrasonic instrumentation used in eye
and other types of surgeries, sirens and alarms for warnings, determination of fundamental properties of
thin films from an understanding of atomic vibrations, and stimulation of bone growth.

It is likely that the early interest in vibrations was due to development of musical instruments such as
whistles and drums. As early as 4000 B.C., it is believed that in India and China there was an interest in
understanding music, which is described as a pulsating effect due to rapid change in pitch. The origin of
the harmonica can be traced back to 3000 B.C., when in China, a bamboo reed instrument called a
“sheng” was introduced. From archeological studies of the royal tombs in Egypt, it is known that stringed
instruments have also been around from about 3000 B.C. A first scientific study into such instruments is
attributed to the Greek philosopher and mathematician Pythagoras (582—507 B.C.). He showed that if two
like strings are subjected to equal tension, and if one is half the length of the other, the tones they produce
are an octave (a factor of two) apart. It is interesting to note that although music is considered a highly
subjective and personal art, it is closely governed by vibration principles such as those determined by
Pythagoras and others who followed him.

The vibrating string was also studied by Galileo Galilei (1564—-1642), who was the first to show that pitch
is related to the frequency of vibration. Galileo also laid the foundations for studies of vibrating systems
through his observations made in 1583 regarding the motions of a lamp hanging from a cathedral in Pisa,
Italy. He found that the period of motion was independent of the amplitude of the swing of the lamp. This
property holds for all vibratory systems that can be described by linear models. The pendulum system
studied by Galileo has been used as a paradigm to illustrate the principles of vibrations for many
centuries. Galileo and many others who followed him have laid the foundations for vibrations, which is a
discipline that is generally grouped under the umbrella of mechanics.

Importance of the Study of Vibration:

Most human activities involve vibration in one form or other. For example, we hear because our eardrums
vibrate and see because light waves undergo vibration. Breathing is associated with the vibration of lungs
and walking involves (periodic) oscillatory motion of legs and hands. Human speech requires the
oscillatory motion of larynges (and tongues) [1.17]. Early scholars in the field of vibration concentrated
their efforts on understanding the natural phenomena and developing mathematical theories to describe
the vibration of physical systems. In recent times, many investigations have been motivated by the
engineering applications of vibration, such as the design of machines, foundations, structures, engines,



turbines, and control systems. Most prime movers have vibrational problems due to the inherent
unbalance in the engines. The unbalance may be due to faulty design or poor manufacture. Imbalance in
diesel engines, for example, can cause ground waves sufficiently powerful to create a nuisance in urban
areas. The wheels of some locomotives can rise more than a centimeter off the track at high speeds due to
imbalance. In turbines, vibrations cause spectacular mechanical failures. Engineers have not yet been able
to prevent the failures that result from blade and disk vibrations in turbines. Naturally, the structures
designed to support heavy centrifugal machines, like motors and turbines, or reciprocating machines, like
steam and gas engines and reciprocating pumps, are also subjected to vibration. In all these situations, the
structure or machine component subjected to vibration can fail because of material fatigue resulting from
the cyclic variation of the induced stress. Furthermore, the vibration causes more rapid wear of machine
parts such as bearings and gears and also creates excessive noise. In machines, vibration can loosen
fasteners such as nuts. In metal cutting processes, vibration can cause chatter, which leads to a poor
surface finish. Whenever the natural frequency of vibration of a machine or structure coincides with the
frequency of the external excitation, there occurs a phenomenon known as resonance, which leads to
excessive deflections and failure. The literature is full of accounts of system failures brought about by
resonance and excessive vibration of components and systems Because of the devastating effects that
vibrations can have on machines and structures, vibration testing has become a standard procedure in the
design and development of most engineering systems .

In many engineering systems, a human being acts as an integral part of the system. The transmission of
vibration to human beings results in discomfort and loss of efficiency. The vibration and noise generated
by engines causes annoyance to people and, sometimes, damage to property. Vibration of instrument
panels can cause their malfunction or difficulty in reading the meters. Thus one of the important purposes
of vibration study is to reduce vibration through proper design of machines and their mountings. In this
connection, the mechanical engineer tries to design the engine or machine so as to minimize imbalance,
while the structural engineer tries to design the supporting structure so as to ensure that the effect of the
imbalance will not be harmful .

Number of Degrees of Freedom:

The minimum number of independent coordinates required to determine completely the positions of all
parts of a system at any instant of time defines the number of degrees of freedom of the system. The
simple pendulum shown in Fig. , as well as each of the systems shown in Fig. , represents a single-degree-
of-freedom system. For example, the motion of the simple pendulum can be stated either in terms of the
angle or in terms of the Cartesian coordinates x and y. If the coordinates x and y are used to describe the
motion, it must be recognized that these coordinates are not independent.
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Discrete and Continuous Systems:

A large number of practical systems can be described using a finite number of degrees of freedom. Some
systems, especially those involving continuous elastic members, have an infinite number of degrees of
freedom. As a simple example, consider the cantilever beam . Since the beam has an infinite number of
mass points, we need an infinite number of coordinates to specify its deflected configuration. The infinite
number of coordinates defines its elastic deflection curve. Thus the cantilever beam has an infinite
number of degrees of freedom.

Most structural and machine systems have deformable (elastic) members and therefore have an infinite
number of degrees of freedom. Systems with a finite number of degrees of freedom are called discrete or
lumped parameter systems, and those with an infinite number of degrees of freedom are called continuous
or distributed systems. Most of the time, continuous systems are approximated as discrete systems, and
solutions are obtained in a simpler manner. Although treatment of a system as continuous gives exact



results, the analytical methods available for dealing with continuous systems are limited to a narrow
selection of problems, such as uniform beams, slender rods, and thin plates. Hence most of the practical
systems are studied by treating them as finite lumped masses, springs, and dampers. In general, more
accurate results are obtained by increasing the number of masses, springs, and dampers that is, by
increasing the number of degrees of freedom

Types of Vibrations :

Longitudinal vibrations: When the particles of the shaft or disc moves parallel to the axis of the shaft, as
shown in Fig. (a), then the vibrations are known as longitudinal vibrations. In this case, the shaft is
elongated and shortened alternately and thus the tensile and compressive stresses are induced
alternately in the shaft.

Transverse vibrations: When the particles of the shaft or disc move approximately perpendicular to the
axis of the shaft, as shown in Fig. (b), then the vibrations are known as transverse vibrations. In this case,
the shaft is straight and bent alternately and bending stresses are induced in the shaft.

Torsional vibrations: When the particles of the shaft or disc move in a circle about the axis of the shaft,
as shown in Fig. (c), then the vibrations are known as torsional vibrations. In this case, the shaft is
twisted and untwisted alternately and the torsional shear stresses are induced in the shaft.

Free Vibration. If a system, after an initial disturbance, is left to vibrate on its own, the ensuing vibration
is known as free vibration. No external force acts on the system. The oscillation of a simple pendulum is
an example of free vibration.

Forced Vibration. If a system is subjected to an external force (often, a repeating type of force), the
resulting vibration is known as forced vibration. The oscillation that arises in machines such as diesel
engines is an example of forced vibration.

If the frequency of the external force coincides with one of the natural frequencies of the system, a
condition known as resonance occurs, and the system undergoes dangerously large oscillations. Failures
of such structures as buildings, bridges, turbines, and airplane wings have been associated with the
occurrence of resonance.

Undamped and Damped Vibration

If no energy is lost or dissipated in friction or other resistance during oscillation, the vibration is known
as undamped vibration. If any energy is lost in this way, however, it is called damped vibration. In many
physical systems, the amount of damping is so small that it can be disregarded for most engineering
purposes. However, consideration of damping becomes extremely important in analyzing vibratory
systems near resonance

Linear and Nonlinear Vibration

If all the basic components of a vibratory system the spring, the mass, and the damper behave linearly,
the resulting vibration is known as linear vibration. If, however, any of the basic components behave
nonlinearly, the vibration is called nonlinear vibration. The differential equations that govern the
behavior of linear and nonlinear vibratory systems are linear and nonlinear, respectively. If the vibration
is linear, the principle of superposition holds, and the mathematical techniques of analysis are well
developed. For nonlinear vibration, the superposition principle is not valid, and techniques of analysis
are less well known. Since all vibratory systems tend to behave nonlinearly with increasing amplitude of
oscillation, a knowledge of nonlinear vibration is desirable in dealing with practical vibratory systems.
Deterministic and Random Vibration

If the value or magnitude of the excitation (force or motion) acting on a vibratory system is known at
any given time, the excitation is called deterministic. The resulting vibration is known as deterministic
vibration.

In some cases, the excitation is nondeterministic or random; the value of the excitation at a given time
cannot be predicted. In these cases, a large collection of records of the excitation may exhibit some



statistical regularity. It is possible to estimate averages such as the mean and mean square values of the
excitation. Examples of random excitations are wind velocity, road roughness, and ground motion
during earthquakes. If the excitation is random, the resulting vibration is called random vibration. In this
case the vibratory response of the system is also random; it can be described only in terms of statistical
quantities.
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Elements of Vibrating system :

There are, in general, three elements that comprise a vibrating system:

1) inertia elements,
ii) stiffness elements, and
i) dissipation elements.

In addition to these elements, one must also consider externally applied forces and moments and external
disturbances from prescribed initial displacements and/or initial velocities.

Direction of

maotion

Mass

Force downwards |
due to Weight i

p.d
e

The inertia element stores and releases kinetic energy, the stiffness element stores and releases potential
energy, and the dissipation or damping element is used to express energy loss in a system. Each of these
elements has different excitation-response characteristics and the excitation is in the form of either a force
or a moment and the corresponding response of the element is in the form of a displacement, velocity, or
acceleration. The inertia elements are characterized by a relationship between an applied force (or
moment) and the corresponding acceleration response. The stiffness elements are characterized by a
relationship between an applied force (or moment) and the corresponding displacement (or rotation)
response. The dissipation elements are characterized by a relationship between an applied force (or
moment) and the corresponding velocity response.

Quantity Units

Translational motion

Mass. m kg
Stiffness, k N/m
Damping, ¢ N-s/m
External force, F N

Rotational motion

Mass moment of inertia, .J kg'm2
Stiffness, k, N-m/rad
Damping, ¢, N-m-s/rad

External moment, M N-m



Spring Elements

A spring is a type of mechanical link, which in most applications is assumed to have negligible mass and
damping. The most common type of spring is the helical-coil spring used in retractable pens and pencils,
staplers, and suspensions of freight trucks and other vehicles. Several other types of springs can be
identified in engineering applications. In fact, any elastic or deformable body or member, such as a cable,
bar, beam, shaft or plate, can be considered as a spring. A spring is commonly represented as shown in
Fig. . If the free length of the spring, with no forces acting, is denoted /, it undergoes a change in length
when an axial force is applied. For example, when a tensile force F is applied at its free end 2, the spring
undergoes an elongation x as shown in Fig. , while a compressive force F applied at the free end 2 causes
a reduction in length x as shown in Fig. .
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Deformation of a spring,

A spring is said to be linear if the elongation or reduction in length x is related to the applied force F as
F=kx

where £ is a constant, known as the spring constant or spring stiffness or spring rate. The spring constant
k is always positive and denotes the force (positive or negative) required to cause a unit deflection
longation or reduction in length) in the spring. When the spring is stretched (or compressed) under a
tensile (or compressive) force F, according to Newton s third law of motion, a restoring force or reaction
of magnitude +F or —F is developed opposite to the applied force. This restoring force tries to bring the
stretched (or compressed) spring back to its original unstretched or free length as shown in Fig. (or
1.18(c)). If we plot a graph between F and x, the result is a straight line according to Eq. (1.1). The work
done (V) in deforming a spring is stored as strain or potential energy in the spring, and it is given by

1,
U = —kx?
2)."



Combination of Springs

In many practical applications, several linear springs are used in combination. These springs can be
combined into a single equivalent spring as indicated below

Case 1: Springs in Parallel. To derive an expression for the equivalent spring constant of springs
connected in parallel, consider the two springs shown in Fig. . When a load W is applied, the system
undergoes a static deflection as shown in Fig. (b). Then the free-body diagram, shown in Fig. (¢), gives
the equilibrium equation

W = kidy + k2dy

e A Kby RaBy

(a) (B {c)

Springs in parallel

It k., denotes the equivalent spring constant of the combination of the two springs, then
for the same static deflection &, we have

W= kcqast
Equations (1.8) and (1.9) give
keg = ky + Ky

In general, if we have n springs with spring constants &, ks, ..., k, in parallel, then the
equivalent spring constant k., can be obtained:

keq:ki ‘I’kg‘i‘""f'kn

Case 2: Springs in Series. Next we derive an expression for the equivalent spring constant of springs
connected in series by considering the two springs shown in Fig. (a). Under the action of a load W,
springs 1 and 2 undergo elongations and respectively, as shown in Fig. (b).
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The total elongation (or static deflection) of the system, is given by

Oy = 0 + 0,

Since both springs are subjected to the same force W, we have the equilibrium shown in
Fig. (c)

W = k;Sl

W = kzag

If keq denotes the equivalent spring constant, then for the same static deflection,

W = keqﬁst
ki6) = kobdy = kggby
or
keqaqt keqsqt
3, = kl E].[ld 8’3 = kz

Substituting these values of 8, and &, into Eq. (1.12), we obtain

keqasi + keqasi _ 5
ki by M



—that is,

1.

kg ki k3
Equation (1.16) can be generalized to the case of n springs in series:

__1_+1_+ +1_
ok ke k,

In certain applications, springs are connected to rigid components such as pulleys, levers,
and gears. In such cases, an equivalent spring constant can be found using energy equiva-
lence

Mass or Inertia Elements

The mass or inertia element is assumed to be a rigid body; it can gain or lose kinetic energy whenever the
velocity of the body changes. From Newton s second law of motion, the product of the mass and its
acceleration is equal to the force applied to the mass. Work is equal to the force multiplied by the
displacement in the direction of the force, and the work done on a mass is stored in the form of the mass s
kinetic energy. In most cases, we must use a mathematical model to represent the actual vibrating system,
and there are often several possible models. The purpose of the analysis often determines which
mathematical model is appropriate. Once the model is chosen, the mass or inertia elements of the system
can be easily identified.

In many practical applications, several masses appear in combination. For a simple analysis, we can
replace these masses by a single equivalent mass
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Damping Elements

In many practical systems, the vibrational energy is gradually converted to heat or sound. Due to the
reduction in the energy, the response, such as the displacement of the system, gradually decreases. The
mechanism by which the vibrational energy is gradually converted into heat or sound is known as
damping. Although the amount of energy converted into heat or sound is relatively small, the
consideration of damping becomes important for an accurate prediction of the vibration response of a
system. A damper is assumed to have neither mass nor elasticity, and damping force exists only if there is
relative velocity between the two ends of the damper. It is difficult to determine the causes of damping in
practical systems. Hence damping is modeled as one or more of the following types.

Viscous Damping. Viscous damping is the most commonly used damping mechanism in vibration
analysis. When mechanical systems vibrate in a fluid medium such as air, gas, water, or oil, the resistance
offered by the fluid to the moving body causes energy to be dissipated. In this case, the amount of
dissipated energy depends on many factors, such as the size and shape of the vibrating body, the viscosity
of the fluid, the frequency of vibration, and the velocity of the vibrating body. In viscous damping, the
damping force is proportional to the velocity of the vibrating body Typical examples of viscous damping
include (1) fluid film between sliding surfaces, (2) fluid flow around a piston in a cylinder, (3) fluid flow
through an orifice, and (4) fluid film around a journal in a bearing.

Coulomb or Dry-Friction Damping. Here the damping force is constant in magnitude but opposite in
direction to that of the motion of the vibrating body. It is caused by friction between rubbing surfaces that
either are dry or have insufficient lubrication.

Material or Solid or Hysteretic Damping. When a material is deformed, energy is absorbed and
dissipated by the material . The effect is due to friction between the internal planes, which slip or slide as
the deformations take place. When a body having material damping is subjected to vibration, the stress-
strain diagram shows a hysteresis loop as indicated . The area of this loop denotes the energy lost per unit
volume of the body per cycle due to damping.

Vibration Analysis Procedure

A vibratory system is a dynamic one for which the variables such as the excitations (inputs) and
responses (outputs) are time dependent. The response of a vibrating system generally depends on the
initial conditions as well as the external excitations. Most practical vibrating systems are very complex,
and it is impossible to consider all the details for a mathematical analysis. Only the most important
features are considered in the analysis to predict the behavior of the system under specified input
conditions. Often the overall behavior of the system can be determined by considering even a simple
model of the complex physical system. Thus the analysis of a vibrating system usually involves
mathematical modeling, derivation of the governing equations, solution of the equations, and
interpretation of the results.

Step 1: Mathematical Modeling. The purpose of mathematical modeling is to represent all the
important features of the system for the purpose of deriving the mathematical (or analytical) equations
governing the system s behavior. The mathematical model should include enough details to allow
describing the system in terms of equations without making it too complex. The mathematical model
may be linear or nonlinear, depending on the behavior of the system s components. Linear models
permit quick solutions and are simple to handle; however, nonlinear models sometimes reveal certain
characteristics of the system that cannot be predicted using linear models



Step 2: Derivation of Governing Equations. Once the mathematical model is available, we use the
principles of dynamics and derive the equations that describe the vibration of the system. The equations
of motion can be derived conveniently by drawing the free-body diagrams of all the masses involved.
The free-body diagram of a mass can be obtained by isolating the mass and indicating all externally
applied forces, the reactive forces, and the inertia forces. The equations of motion of a vibrating system
are usually in the form of a set of ordinary differential equations for a discrete system and partial
differential equations for a continuous system. The equations may be linear or nonlinear, depending on
the behavior of the components of the system. Several approaches are commonly used to derive the
governing equations. Among them are Newton s second law of motion, D Alembert s principle, and the
principle of conservation of energy.

Step 3: Solution of the Governing Equations. The equations of motion must be solved to find the
response of the vibrating system. Depending on the nature of the problem, we can use one of the
following techniques for finding the solution: standard methods of solving differential equations,
Laplace transform methods, matrix methods,1 and numerical methods. If the governing equations are
nonlinear, they can seldom be solved in closed form. Furthermore, the solution of partial differential
equations is far more involved than that of ordinary differential equations. Numerical methods involving
computers can be used to solve the equations.

Step 4: Interpretation of the Results. The solution of the governing equations gives the displacements,
velocities, and accelerations of the various masses of the system. These results must be interpreted with
a clear view of the purpose of the analysis and the possible design implications of the results.

Examples :
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MECHANICAL VIBRATIONS
UNIT II
Free Vibrations of Single Degree of Freedom Systems

Undamped Free Vibrations: Governing differential equation , Newton’s method , Energy method,
Rayleigh’s method, torsional system — equations of motion and solution.

Damped Vibrations: Governing differential equation, critical damping coefficient and damping ratio,
damped natural frequency, logarithmic decrement, energy dissipated in viscous damping.

A practical system 1s very complicated. Therefore, before proceeding to analyse the
system it is desirable to simplify it by modeling the system. The modeling of the system
15 carnied over in such a manner that the result 1s acceptable within the desirable
accuracy. Instead of considering distributed mass, a lumped mass is easier to analyse,
whose dynamic behaviour can be determined by one independent principal coordinate, in
a single degree freedom system. It 1s important to study the single degree freedom
system for a clear understanding of basic features of a vibration problem.

Elements of Lumped Parameter Vibratory System
The elements constituting a lumped parameter vibratory system are ;
The Mass
The mass i1s assumed to be rigid and concentrated at the centre of gravity,
The Spring

It is assumed that the elasticity is represented by a helical spring. When deformed
it stores energy. The energy stored in the spring is given by

PE=Lp4?
2

where & 15 stiffness of the spring. The force at the spring 1s given by
F=kx

The springs work as energy restoring element. They are treated massless,

The Damper

In a vibratory system the damper 1s an element which 1s responsible for loss of
energy in the system. It converts energy into heat due to friciion which may be
either sliding friction or viscous friction. A vibratory system stops vibration
because of energy conversion by damper. There are two types of dampers.



Viscous Damper

A viscous damper consists of viscous friction which converts energy info
heat due to this. For this damper, force is proportional to the relative
velocity.

F; o relative velocity (v)

Fy=cv
where ¢ is constant of proportionality and it is called coefficient of
damping.

The coefficient of viscous damping 1s defined as the force m ‘N when
velocity 1s 1 m/s.

Coulumb’s Damper

The dry shiding friction acts as a damper. It 15 almost a constant force but
direction 1s always opposite to the shiding velocity. Therefore, direction of
friction changes due to change in direction of velocity.

The Excitation Force

It 1s a source of continuous supply of energy to the vibratory system. It 1s an
external periodic force which acts on the vibratory system.

It is important to study the single degree freedom system for a clear understanding
of basic features of a vibration problem.

Undamped Free Vibration
There are several methods to analyse an undapmed system.
Methodology
Method Based on Newton's IT Law
According to the Newton’s II law, the rate of change of linear momentum 1s
proportional to the foree impressed upon it

% (mv) o Net force in direction of the velocity

Using v= & =X
dt
dx .
== =cYF
it (mi)=cX
where ¢ 1s constant of proportionality.
or mi=c} F

For proper units in a system ¢ = 1
mx=3%F

The direction of forces m¥ and ¥ F are same. A model which represents
undamped single degree of freedom system shall have two elements, ie.
helical spring and mass. The mass 1s constrained to move only in one
direction as shown in Figure 7 2_ The mass is in static condition in

Figure 7.2(a). The free body diagram of the mass is shown in



Figure 7.2(b). The body 1s in equilibrium under the action of the two forces.
Here “A’ 1s the extension of the spring after suspension of the mass on the

spring.
Therefore, EFA=mg (7D
Unstretched
position a A k(o)
____________ S I SRR
N |
LB i
mg k mg

(a) Spring Mass  (b) Static Condition  (¢) Dynamic Condition
Figure 7.2 : Undamped Free Vibration

Figure 7_2(c) represents the dynamic condition of the body. In this case, the
body 1s moving down with acceleration * X’ also in downward direction,

therefore,
pi =% F 1n direction of x
or mi=mg —k (x + A) N )|
Incorporating Eq. (7.1) in Eq. (7.2)
mi=—kx
or ik +kx=0 (73

Method Based on D’ Alembert’s Principle
The free body diagram of the mass in dynamic condition can be drawn as

follows :
k (A+x)
mg
m ¥ {Inertia force)

Figure 7.3 : Free Body Diagram

The free body diagram of mass 15 shown in Fipure 7 3. The force equation
cat1 be written as follows :

mx +mg =k (x + A) )
Incorporating Eq. (7-1) mn Eq. (7.4), the following relation 1s obtained.
mi+kc=0
This equation is same as we got earlier.
Energy Method

This method 1s applicable to only the conservative systems. In conservative
systems there 15 no loss of energy and therefore total energy remains

Mec



system 1s partly kinetic and partly potential (elastic strain energy). The
kinetic energy is due to the mass (m) and velocity (%). The potential &
1s due to spring stiffness and relative movement between the two ends

Spring.
Energy (E) = T+ U = constant (C)
where T = Kinetic energy of the system and’
U= Elastic strain energy.
Since total energy remains constant
dE

20 o E(I+U)=0
dt dr

1 i3
T=—m(x
3 (x)

Spring Force —s
g

il N

Deflection

|

Figure 7.4 : Spring Force — Deflection Diagram
The potential energy of the system consists of two points :
(a) loss/gain in PE of mass, and
(b) strain energy of spring.
Consider an infinitesimal element du at x = u.
From Figure 7.4
Spring force (F,) =k (u+ A)
Work done dW =k (u + A) < du

X
U=I dW — loss of PE of mass
0

k(u+ A)du—mg x

o e,

U=I (fu+ mg) du —mg x [ kA =mg]
1]

or L’:%(kxz)+mgx—mgx

el



i[lm_ﬂikx?]:o
dt\ 2 2

1 1
—mx2ixX¥+—k=x2x+x=0
2 2

or mi+ k=0
This 15 the same equation as we got earlier.

Rayleigh's Method

It is a modified energy method. It may be noted that in a conservative
system potential energy is maximum when kinetic energy is minimum and
vice-versa. Therefore, equating maximum kinetic energy with maximum
potential energy.

1 . 2 1 2
- ==k
and X = X

1 m (X o) Ly
2 2

or O=,— .. (7.6)
m

Solution of Differential Equation
The differential equation of single degree freedom undamped system is given by
mi+ k=0
or j{:+{£]x=0 A

when coefficient of acceleration term 1s unity, the underroot of coefficient of x 1s
equal to the natural circular frequency, i.e. ‘@,

©®, = i _..(7.8)

m
Therefore, Eq. (7.7) becomes
i+l x=0 (79
The equation is satisfied by functions sin @, f and cos @, f. Therefore, solution of
Eq. (7.9) can be written as
x=Asmw,f+Bcosw, ... (7.10)

where 4 and B are constants. These constants can be determined from initial
conditions. The system shown in Figure 7.2(a) can be disturbed in two ways :

(a) by pulling mass by distance “X", and

(b) by lutting mass by means of a fast moving object with a veloeity \
say ‘7.

Considering case (a)
r=0,x=X and x=0

X=B and 4=0

x=2X cos @,f O i



Considering case (b)

(=0, 2a=0ad i=F

¥V
B=0 and 4=—

@y

X =— sin @y ¢ ... (7.12)

@y

Eehaviour of Undamped System

Consider the system shown m Figure 7.2(a). The system has been disturbed by
pulling the mass by distance “X°. The solution of the system in this case is given
by Eq. (7.11) wlach 15

x — X cos o, f

" - i Tl:

r=—Xo,smao,t=Xa, ms{mnr+5J
and i=— X! cosm,f=Xol cos (o, +7)

Thesc expressions indicate that veloeity veetor leads displacement by 1; and

acceleration leads displacement by *n°. Ths maximum velocity is (¥ ) and

maximum acceleration 15 (X mﬁ) .

X @r

(a) "I \ W2, 21

(c)

Acceleration —s
]

Figure 7.6 : Plots of Displacement, Velocity and Acceleration

Figure 7.6 shows the plots of displacement, velocity and acceleration, with respect
to time. The following observations can be made from these diaprams :

(a) A body, if disturbed, will never stop vibrating.



(b) When displacement 1s maximum, velceity 15 zerc and acceleration is

maximum 1 direction opposite to displacement.

(r)  When displacement 15 zern_ velority 18 maximum and acceleration 1s

ZET0.

Damped Free Vibration

In undamped [ree vibrations, (wo elements (spring :nd nmss) were used bul in danped
third element which 1s damper in addition to these are used. The three element model 1s
shown in Figure 7.7. In static equilibrium

or

Let

ﬁ’ﬂ:?ﬂg
mi=mg -k (x+A)—ex
mx =—kx—cx

mik+ct+hke=0 ..(7.13)

x=Xe"

Substituting for x in Eq. (7.13) and simplifying it

or

ki 4
k \_‘—_1 C ]

5
ms  +cs+k=0

k
S+ls+2=0 N AT)
m m
- 2 -
1 k
slf_{i]i_ i} _4[—J .(19)
’ 2m 2\ m L m

K(x+A)

m T
¥ mx

X ma

(@) (b) ©
Figure 7.7 : Damped Free Vibration

‘The solution of Eq. (/.13) is given by

x—Xje

Fia
—e l.2m_JIL X

5% 2 - F 5 B 2 Y
,_fi LI ey 4(E)|; 0 I o A
| 2m) 2¥\m m 2m; 2 ¥im m

+X1€

1€

- ..(7.16)

The nature of this solution depends on the term in the square root. There are three

possible cases :

(a)

2
—) >4 (—J — Overdamped case



o ;
(b) {i} =4 {i) — Critically damped case
m m

3
© {i] <4 [i] — Underdamped case
m m

Let the critical damping coefficient be C,, therefore,

%2
(&
m

(2
y m
or C = 2-Jkmn =2 %ml =2m \,‘m2 E:Zm @,

or C. = 2lan =2m o,
Almost all the systems are underdamped 1n practice.

Therefore, J{ij —4(ﬁlsz4[£J_{£]

m m n m
The ratio of damping coefficient (¢) to the crifical damping coefficient 1s called damping
factor “(".

..(717)

T
i ) — 2 - — 2
x=e 2m |:X1 FHN-C 4 x, “’]

Let , *fl -2 =wy (say) ...(7.18)

where o, 15 natural frequency of the damped free vibrations.

Therefore, for under-damped case

3

x=e [ X &%+ X, et . .(719)

For critically damped system
[4

iy
x=(X;+ Xy e 2m ..(7.20)

For overdamped system

solp = _ 3
x=g Im [Xle“’"{“'- Bty x, & O WE 1”} .21

C—Ex&=gx2””“n

— = o,
2m C. 2m 2m

U

n

x:e‘é%’[xle o ! §4‘1+X2e“"""45'"1} (122



Undcr damped System

— (hwer damped Syslam
_ Critical'y damped Syslem
paper=— I

Figure 7.8

The Eq. (7.19) can also be written as

x=Xeg "7 cos (g r+4)
whera X and ¢ are constants. Xrepresents amplitude and § phase angle.
Leatat =L x=x.

@t

p=Xe cos (@ F+¢)

Aller vne lime period

t=1+1, and X=X

-

5= Xe ) nas fng (F+1,) + i}

Dividing Eq. (7.24) by Eq (7.25)

& iy
s Xe 2onCh cos @y T+
i Es P =
N Xe Lo () vos {ty (1) 4}
1 2m
Smce b
fp oy
P
or o, JP— g8
o _ cos (o + b)
x cos {oy t+ 21+ o}
Smee cos B=cos (21 +6)

cos (g F+0) =005 {oy F+ Im+ &}

Ta . 3‘:- P Ty

X
N 5 AT g in 2wy,
B L =‘—_C'C'nf_p=gmn —
| @ w, JI-C°
_ o
or L, [:‘[—U]zL—-‘1
M .Jl—f_:
2MC_ & called logarithmic de (
—/— 15 Cdlled JOEFATT mi CTETIETIL .
,,‘I'l—s:? ¢
If at t=t1+nt

P

oo {723)

coa(7224)

(725)

.. (726)



It can be proved that

Xp 2nnl
e S > s (T2
Xn q,’l = C}
If <03 L, [ 2x¢
x

Figure 78 represents displacement time diagram for the above mentioned three cases.
For over-damped and critically damped system mass returns to its original position
slowly and there is no vibration. Vibration is possible only in the under-damped system
because the roots of Eq. (7.14) are complex and solution consists of periodic functions

(Bq. (7.22)).
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Forced Vibrations of Single Degree of Freedom Systems

Sources of Excitation , Equations of motion , Response of undamped system under harmonic
excitation, Total response , beating phenomenon , Response of damped system under harmonic
excitation, frequency response , quality factor and band width , response under harmonic excitation of
the base, vibration isolation, transmissibility, force transmission to foundations, response of a damped

system under rotating unbalance.



Forced Vibration of Single-Degree-Freedom System

FORCED VIBRATION DUETO HARMONIC
EXCITATION

kx cx
) b s
F = F,sin ot
F = F, sin ot X m x

(a) (b)

Fig. 4.1 Spring-mass-dashpot system under forced vibration

Let us consider a classical spring-mass-dashpot system excited by a sinusoidal forc-
ing function F'= Fsin @t as shown in Fig. 4.1(a) where ‘F” is the amplitude and ‘@’
is the angular frequency. Let ‘£’ be the spring stiffness of the spring, ‘m’ be the mass
of the body and ‘c’ be the damping coefficient. Let at any instant the system be dis-
placed through a distance ‘x’ from the equilibrium position as shown in Fig. 4.1(a).
The body has at the instant a velocity ‘x’ at the instant in the upward direction, i.e.
the direction of positive of ‘x’ where the external force (F' = F;sin w?) is acting on the
system. The forces acting are as shown in the free-body diagram Fig. 4.1(b).

The damping resistance at any instant is equal to cx.

Note: In case of forced vibrations, there will be four forces acting on a system,
i.e. spring force, damping force, inertia force and impressed force or external
force. (See Eq. 4.4).

Now applying Newton’s second law of motion to mass ‘m’, i.e. LF = mx
—kx—cx+F=mX, mx+cx+kx=Fgsin ot 4.1

This is a linear differential equation of motion, which is a second-order nonhomoge-
neous differential equation of a single-degree freedom system having free vibration
with damping. The complete solution of this equation has two components, viz. com-
plimentary function x_ (CF) and particular integral or function x, (PI),

Le. x=x.tx,
1. Complimentary function 'x,’ (See Sec. 3.6, Chapter 3)

This can be obtained by equating the left-hand side of Eq. 4.1 to zero. That means
there is no forcing function (' = F,sin w?) on the system. This is also called transient
response because it will eventually die out.

The resulting equation is mx + cx + kx = 0.

This equation is a linear, fundamental homogeneous second-order differential equa-
tion of motion of a single-degree-of-freedom system having free vibration with
damping.



. c. k c _c¢ ¢ 2ma,
x+—x+—x=0. Hereﬁ:c_'mcz 25 "’m n
where £ = Damping ratio £ =— Usmg these values in above equation, we have
x+2éw, x+a)2x 0 .42
Let x=Ae", x = Ase* = sx, ¥ = A 5%¢" = 5°x

Using these values in Eq. 4.2,
S x+28w,sx+ 0x=0,(*+2Ew, s+ @d)x=0,as x#0
s x+ 28w, + 0> =0

This is a quadratic equation of ‘s’ and there will be two roots for‘s’

_25(0" + u(zéwn)z - 4(0121

Si,27 )
sl, 27 _éwn + U(éwn)z - (Dﬁ
Sl’2=(0"(—§:b 452_1) ...43

When & < 1, (underdamping) in Eq. 4.3, the solution is

Syt

x =4, + 4,e or x = %% (¢, cos Wt + ¢, sin @ f
1 1 Lt Cy 4

5, =—&w, + i @y where ;= @, {1- & orx = Ye > sin (w,t + ¥)
c
2
where Y= cf+c§ Y =tan (1)

when & = 1 (critical damping), the solution is x = (¢, + c,)e ',

When & > 1, (overdamping), the solution is
x= 4"+ e = 0, (-E£VE - 1),

2. Particularintegral or solution 'xp’(steady-state component) Letx
= X sin (w1-¢), be the particular solution (because the forcing function is a sinusoidal,
the particular integral should also be sinusoidal) where ‘X’ is the constant amplitude of
vibration of the system and ‘¢’ is the angle (phase difference) by which the displace-
ment vector lags the force vector and ‘@’ is the angular frequency.

x = X sin (ot — ¢). Differentiating with respect to time ‘¢’ twice,
% = @X cos(0f - §) = stin(wt_ ¢+§)
¥ = —@’X sin (wt—9¢)
Substituting these values in Eq. 4.1, we get
m X sin @1~ @)1+ c[ X sin (01— ¢+ T)| + kX sin (@1 - ) = Fy sin 1
mX @ sin (@7 — ¢ + m)] + ch)sin(a)t— ¢+§) + kX sin (0f - §) — Fy sin a)t=(‘)t4

Inertia force + Damping force + Spring force — Impressed force =0



Forced Vibration of Single-Degree-Freedom System

From the above equation we absorbed that
* The term mX &’ sin (¢ — ¢ + m) is the inertia force
¢ The term cX @ sin (a)t -0+ g) is the damping force
* The term kX sin (@? — ¢) is the spring force
+ The term Fsin @t is harmonic excitation force (impressed Force)

These forces can be vectorially represented as follows:

+y
(wt— ¢ + 7/2)
Fo
?  kx
- Y A 2
(wt= ¢+ m) - 7 Q(wt—rp) mao x
-Xx +X F, AC co X
o B\\ cox
2
mo x \
ot C | kx
_y oxo A ‘l(wt—q)) o
(a) Vector polygon diagram (b) Force polygon

Fig. 4.2 Vector representation of forces on the system having forced vibration

From vector diagram Fig. 4.2(a), we can observe that
(a) Spring force is always opposite to the displacement
(b) Damping force lags the displacement by 90°

(c) Inertia force is out of phase with the displacement (180°)

In Fig. 4.2(b), force polygon from the right-angled triangle ABC
AB* = BC* + AC?, where AB=F,, BC=_c wX, AC = (kX — ma’X)
F¢=(cX )+ (kX — mXa?y, FE=X*(k—ma?)+ (cw)*]
R

2 =
X (k— mw?)? + (cw)?

2
FO

(k— ma?y? + (cw)?

The steady state amplitude X = \)’

P Fy _ Fy

g el T o




Dividing the right-hand side numerator and denominator by ‘£’, we get

-0
X= — k2 — .. 45
2 0? £
(1% (o)
The static deflection ‘X’ due to the harmonic force is given by

Fy m 1 c¢ ¢ ©C 2Nmk 26 . 2
Xst=7,and?=g,%=c—cx?=§x —é T—zé\/i 5 %=—

Using these values in Eq. 4.5,
¥+28w,x+@lx=0 .. (Eq.42)
X

st

X
X-= X"

fg-ear

1
V(1 =) + 2&r?

Letr= wﬂn where ‘7’ is the frequency ratio.
Once again from force diagram Fig. 4.2(b) in the right-angled triangle ABC,
an ¢ = BC_ cdXo
AC kX mXa’
tan ¢ = cw o
k—ma? k( 1 _l)
o
o o)
) [k] g
(0]
s [1-(@]]
2ér [ 2&r
tan ¢ = or ¢ =tan" .. 4.6
’ (1-7) ¢ 1-7
Considering the underdamped case (€ < 1), the complete solution is given by
x=x,tx
e p
x =X, % sin (0t + W) + X sin (01 — ¢)
. 2
where X= * ,¢=tan"' i]
V(1 =22+ (2&? 1-7

o, = o)\l -& whereXst=70o
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MAGNIFICATION FACTOR (MF)

Magnification factor (MF) is defined as the ratio of steady—state amplitude to the
zero frequency deflection (static deflection due to harmonic force),

X 1

i.e. Magnification factor, MF = Xi’ Y. .. 4.7
s X (1 -2+ 2Er?
o 26r
The phase lag, ¢ = tan 1 .. 4.8
where r= wﬂ

Dimensionless plots of magnification factor (MF) versus frequency
ratio 'r’ and phase lag '¢’ versus frequency ratio 'r’ for different
values of damping factor 'Z’.

Magnification factor and phase lag ‘¢’ are the functions of ‘&’ and frequency ratio

"

Case (i) When r =0, (at zero frequency) in Eq. 4.7, Eq. 4.8 becomes
X 1
Xy (NT=0)%+0
which is the definition of zero frequency deflection and
¢ =tan"! (0), 9= 0.
.. the amplitude ratio or magnification factor is independent of the damping
ratio ‘&’.

=lorX=2X,

Case (ii) When =1 (resonance, i.e. ® = @,) in Eq. 4.7, Eq. 4.8 becomes

X 1 1 —1 25" —1
T A 00) = 9()°.
Xe Jo+e? 26 ( r ) tan (=)



The amplitude ratio or magnification factor depends on damping ratio ‘& atresonance.
As the value of ‘&’ decreases, magnification factor increases and the converse is true,
but at £ = 0, i.e. for undamped system, the value of magnification factor = .

Case (i) When »>>1, and 7> >>>1
1 1 1
—<<<lor—=0and =0
e 7 r

*. equations 4.7 and 4.8 become

X 1 1 25’"
- = d ¢g=tan’|————
Xst L 2 an ',2 i—l
‘j'z(ﬂ‘l)”zg) (7Y
X 1 1 2&r
= = d e —,
g and ¢ = tan 2

o) e

MF = Xi ~0and ¢ = tan"'[-0] = 180°

st

The dimensionless plots of magnification factor (MF) versus frequency ratio(r)
and phase lag (¢) versus frequency ratio(r) for different values of damping factor
are shown in Fig. 4.3(a). These curves reveal a lot of interesting and useful informa-
tion regarding the behaviour of the system to sinusoidal excitation.

Curves of Fig. 4.3(a) are also known as frequency-response curves, since they give
the response of the system to various frequencies. It is seen from these curves that the
response of a particular system at any particular frequency is lower for higher value
of damping and lies below those for lower values of damping. At zero frequency the
magnification factor is unity and is independent of the damping, i.e. X = X,,, which
itself is the definition of zero frequency deflection. At very high frequency, the mag-
nification factor tends to zero or the amplitude of vibration becomes very small. At
resonance (@ = ®,), the amplitude of vibration becomes excessive for small damping
and decreases with increase in damping. For zero damping at resonance, the ampli-
tude is infinite theoretically. Practically, however the system may go into destruction
much before that or the amplitude may be limited because of other factors.

The phase angle also varies from zero at low frequencies to 180° at very high frequen-
cies. It is 90° at resonance and is independent of damping. Over a small frequency
range containing the resonance point, the variation of phase angle is more abrupt
for lower values of damping than for higher values. The more abrupt the change in
phase angle about resonance, sharper is the peak in the frequency response curve.
For zero damping, the phase lag suddenly changes from zero to 180° at resonance.
The corresponding zero damping frequency-response curve is also infinitely sharp
at resonance.

Let us now study the phenomenon of Fig. 4.3(b) by means of the vector diagram and
gain some more insight into what is happening in the system. With reference vector
diagram at very low frequency (o is very small), the inertia term ‘m@’x’ becomes
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\\\4—0
=3
5 0.05
K 0.10
S |
o 0.15
§2 i
o / 0.25
T
=
g, 03 L0.375
<€
T 1.0
0 1 2 3 4 5

— Frequency ratio r= w/w,

(a) Magnification factor versus frequency ratio for different amount of damping.

180 |
§ &=05 = 0.1
o —
S E-=o0375 — |
=120
£
[} =1.0
7
c
©
& 60
£
o

0 1 2 3 4 5

— Frequency ratio r= w/w,

(b) Frequency ratio versus phase angle
Fig. 4.3

negligibly small and damping term ‘cwX’ is also small. This gives rise to small value
of ‘¢’ as shown in Fig. 4.3(b).

The impressed force ‘F|)’ is almost equal and opposite to the spring force ‘4x’ under
these conditions. Thus, for very low frequencies, the phase angle tends to zero and
the impressed force wholly balances the spring force. With increase in the frequency,
the damping force vector (cwX) grows larger. Angle ‘¢’ has also to increase so that
component of ‘F,,” perpendicular to x-direction may balance the increasing damping
force. The inertia force vector grows much more rapidly with increase in frequency
because of the factor ‘@™ in its expression. If we continue to increase the frequency,
a time comes when the spring force and inertia force vectors are equal and opposite

as shown in the figure and this condition is kx = ma’x or ® = m = 0, This is the
resonance condition of the system and the vector diagram becomes rectangular. The
impressed force completely balances the damping force and ¢ = 90°.



2m 4ne?
5= : »(1.435)* = : »£=02236, ®,=3.58 radss, re2o 3 g4
V1-& 1-& ®, 358

The amplitude of vibration is given by ))((

_ 1
s (1= + Q&)

s X,, = Fo/k =20/580

X 1
Xt AJ(1-3.58%2+ (2 x 2236 x 3.58)2
S X=0072m=7.2 mm

26r )_ _1(2 x 0.2236 x 3.58
——— | =tan

Phase angle is given by ¢ = tan‘l( ), ¢=51.53°
1 1-3.58’

ROTATING AND RECIPROCATING UNBALANCE

2 .
mew sin wt

Unbalance in reciprocat-
ing machinery is a com-
mon source of vibration.
Consider a machine of
mass ‘m’ mounted on a
foundation of stiffness ‘&’
and damping coefficient
‘c’ as shown in Fig. 4.4(a)
The unbalance is repre-

2
mew
P

2
->-mew cos wt
2 .
Mx mew sin ot

I

— x.
—> x:
<

sented by the reciprocating

mass ‘m’ having cranked l i
small rotation ‘e’ and con- = kx ox
necting rod length ‘. Let @ ®)

‘@’ be the angular velocity Fig. 4.4 Rotating unbalance

of the crank. Let ‘x’ be the
displacement of non reciprocating mass ‘M-m’ at any instant of time ‘#’. The dis-
placement of reciprocating mass ‘m’ from static equilibrium position is given by x +

esin @+ % sin2 wt+ ...
Applying D’ Alembert’s principle or Newton’s second law of motion to mass ‘M’
SF=M5% .. cx+ke—mea’ sin ot=—M% M5+ cx+ kx =mea’ sin of ..4.9
or let me®?® = F,
M5 + cx + kx = F, sin ot ..4.10

This is a second-order nonhomogeneous differential equation of motion, whose solu-
tion is given by

xX=xtx,
where x. = Complementary function (transient response)

x, = Particular integral (steady-state response already discussed in Article 4.2,
case ‘ii’)
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2
mew

7

2
mew cos wt

.o 2 .
MX  mew sin wt

i

\\} kx cx

(a) (b)

Fig. 4.5 Reciprocating unbalance

Considering the steady-state response or to find the particular integral ‘x,’,
let x, =x=Xsin (0 — §).
where ‘X’ is the amplitude of vibration of the system, ‘¢’ is the angle by which the
displacement vector lags the force vector, and ‘@’ is the angular frequency in rad/s.
i=wXcos (0 )= ®Xsin (a)t— o+ g) i =— o Xsin (f - 9).
Substituting these value in Eq. (4.9),
M- X sin (ot — ¢)] + c[a)Xsin (wr—¢+ g)] + KX sin (1 — ¢) = F, sin o1

Rearranging the above term we have,

M X sin (ot — 9+ 1)+ ch)sin(a)t— ¢+§) + KX sin (@7 — ¢) — Fy sin @t =0
From the above equation, we absorbed that
Inertia force + Damping force + Spring force — Impressed force = 0
The term mX o sin (wf — ¢ + 7) is the inertia force.
The term cXw sin (0t — ¢ + 7/2) is the damping force.
The term X sin (@t — ¢) is spring force.
The term Fsin @? is harmonic excitation force (impressed force).

These forces can be vectorially represented as follows.
From the force polygon, 0—é =F,, AB - caX, a =kX - Mo’ X



In force polygon, from right-angled triangle O4B,
OB? = 04>+ AB* .. F* = (kX — M’ X)* + (cX)?

+y
(wt— ¢ + 7/2)
Fo
?  kx
(ot— ¢+ m) YA 2
90° (t=9) Mo x
-x = + X F, A cw X
B co X
Mes'x \\
ot A kX
¢
=y o o =9 > X
(a) Vector polygon (b) Force polygon

Fig. 4.6 Force and vector polygon
F? F,

0
y X = ’
(k— Ma?)* + (cw)? (k- Ma?)* + (cw)

Fo' =X [(k - Ma?)’ + (co)’] X =

But F, = mea’.

me@* me@*

2o Gof] Yoo

Dividing the right-hand side by both numerator and denominator by ‘k’, we get

mewz

me
We have P
Dividing and multiplying by ‘M’, we have M r e
ko, M_ 1 _. . .
But M OnOr = wﬁ Divide and multiply by c,
me m e me m e C M 1 c ¢ 2Mo 20, 28
—=—— ——=—.—x— —=—and =+ =& =
ko M g2 k M g2 % k @ k S k @ @
me (o)
M\O, 2
" X= e Letr—gy g~ e Al
L el " 1- +(2
- ) () Ve
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c
AB cxm cw ko 28r

And tanp=—1= = = =

PT08 o koM 1M 2 17

k
-1 28r
¢ = tan ] 412
1-#

. . MX [0)
Discussion on “ne Versus o

n

Case (i) When r=0in Eq.4.11

Mx

e = 0, which is independent of the damping ratio “&’.

Case (ii) When r =1 (Resonance, i.e. ® = ®,) in Eq. 4.11

Mx 1 Mx 1
S5 =———3 —— = —> which depends on the damping ratio ‘&, at
me i (25)2 me 26
Mx
§= 0’ me = oo,
; datd ; io=0 Mx _
i.e. at resonance and at damping ratio = 0, 7,5 = oo.
2 3.0 \\\:/ 3 ‘
2
225 £=0.10
E |
[0]
%20 £=025
< /
1.5
X
/ s 0'3%\§§
10 e =—= ————|
E=050 | ——— |
oF Né=1.0c
0
1.0 2.0 3.0 4.0 5.0
_ Frequency ratio r = w/w,

FIG. 4.7 Amplitude ratio versus frequency ratio
Case (iii) When r>>1(0>> m,),ie. #* >>> 1

T

% %
Mx _ » Mx » . Mx

T AT T AR T

0 from Eq. 4.11




FORCED VIBRATION DUETO EXCITATION OF
THE SUPPORT MOTION

In most of locomotives and vehicles, the wheels are mounted on a base or support
for the systems. These wheels can move vertically up and down on the surface of the
base or support on the surface during the moving of the vehicle. In the motion of
these vehicles or body of the wheels and base or support, there is a relative motion
between the support motion, relative to the wheels and the wheels are having motion
relative to the road surface.

In case of support motion, the amplitude of the motion depends upon the speed of the
vehicle and the nature of the road surface. The vibration measuring instruments are
designed on the support motion approach. In a vibratory system where the support
is put to excitation, (i) absolute motion, and (ii) relative motion become most impor-
tant. Such systems are supported to have a spring-mass-damper system of a single
degree of freedom with a moving support or base as shown in Fig. 4.8.

1. Absolute motion (motion transmissibility) Absolute motion of a mass
means its motion with respect to the coordinate system attached to the earth as shown
in Fig. 4.8(a). The absolute displacement of support is y = Y sin wf[sinusoidal motion
Fig. 4.8(b)] and the absolute displacement of the mass ‘m’ from its equilibrium posi-
tion is ‘x’. The displacement of the mass ‘m’ relative to the support is ‘z’.
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m X
.
—> ot kix=y) c(x-y)
(b) (c)

Fig. 4.8 Support motion
The net elongation of the spring is (x — y) and the relative motion between the two
ends of the damper is (x — ). Thenz = (x — y) and z = (x — y).

Let us consider a spring-mass-damper system subjected to the support motion as
shown in Fig. 4.8(a). Due to the support motion, let ‘x’ be the absolute motion of the
system at any instant of time and respective FBD is as shown in Fig. 4.8(c).

Now apply Newton’s second law of motion to mass ‘m’ LF = mx
mx=—c(x—y)—k(x—-y),mx +cx+hkx=cy+ky ..4.13
Since y = Ysin ot, y = @Y cos ot
Substituting these values in Eq. 4.13, we get
mx + cx + kx = c®Y cos @t + kY sin @t, mx + cx + kx = Y(cw cos @t + k sin ®7)
Multiplying and dividing by right-hand side by i+ (cw)? and simplifying, we get

W + (cw)? | ———sin o+ —L cos o \/f%
\/k2 + (cw)? \ I+ (cw)? oo X

,fé’
= WK+ (cw)® {sin o cos & + cos @I sin &} b
k
= 2 1
WK+ (ca)” sin (i + @) Fig. 4.9 Absolute motion
m¥+cx+hkx=Y k2+(cw)2 sin (ot + ) .. 4.14
and phase angle is given by tan . = —— or o =tan" [25 ] ..4.15

Equation 4.15 can be compared to a system excited by an external harmonic force,
Fy
k- ma?)? + (cw)®
where F, = Y\]k2 + (cw)* from last equation
o Wt ed? xR+ (o
U= ma? + (cay "y k- ma?) + (cw)?

Equation 4.16 can be expressed in nondimensional form by dividing numerator and
denominator by ‘k’.

the steady-state amplitude X =

...4.16




§= — w TR=—‘r=)—Y(= — AT
0

()] *(255 (@) T+ (sa)

and tan B = % or f= tan’1[2§ wﬂ] or it can be written as = tan"[2&#]

where 7 = wﬂ frequency ratio and
Ha,)

.. 1 @, _1 0]
phase lag is given by (¢ — ) =tan” [—————|—tan [25(5) ] ..4.18

Figure 4.10(a) shows the plots of amplitude ratio )—Y(against frequency ratio wﬂ for

n

various values of damping factor and Fig. 4.10(b) shows the plots of phase angle

(o — PB) against the frequency ratio o for various values of damping factor. From
the figure, it is seen that "

0) when£<\/f,)—(>l (i) Whenwﬂ>\/f,)—y(<
(iii) when —=\2,% X (iv) when wﬂ =1, % = oo

2. Relative motion In Absolute motion, we assumed that the displacement of the
mass ‘m’ relative to the support is ‘z’

2 3.0 e
2
S 25 0.10
[0}
-5 o6 0.25 0.15
2 N
E /
15 ‘
0.375
/ e
1.0 * ] %E
0.50 {//”’
05 £=10
0
1.0 2.0 3.0 4.0 5.0

——» Frequency ratio r= w/a,

Fig. 4.10(a) Amplitude ratio verses frequency ratio
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—— Frequency ratio r= e/w,

Fig. 4.10(b) Phase angle versus frequency ratio

Then this can be written as
z=(x-y), z=@-y), z=@G-Y)
Substituting these valves in Eq. 4.14 and simplifying, we get
mz + cz + kz = —my ..4.19
We have y=Ysinwt, y=Yocoswt .. j=- Yo sinot
Hence Eq. 4.19 can be written as
mz + ¢z + kz=ma’ y sin ot ..4.20

Eq. 4.20 is in the same form of rotating and reciprocating unbalance Eq. 4.10

(o)

Therefore, the steady-state relative amplitude is
o,
7]
" _orZ - — 421
R EEC AR T

where — is called relative displacement transmissibility

Y
Ha))
and phase angle is given by ¢ = tan™" — .. 422

(@]

ENERGY DISSIPATED BY DAMPING

During forced vibration with viscous damping, energy is continuously absorbed by
the damper so that power must be supplied to maintaining steady-state condition. So
there is a need to evaluate the magnitude of power required and to see how it changes
with the variables.

Work done by the force ‘F” during an interval of time when the body moves through
a displacement ‘dx’ is given by dw = F dx.



Y

3.0

e \\&
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— olo,
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—— Frequency ratio r= w/w,

(b)
Fig. 4.1 (a) Magnification factor versus frequency ratio (b) Phase angle versus frequency
ratio

dx
— X
dt

. 2
Therefore, ‘¢ varies from 0 to -

=F- dt. Over a period of one cycle displacement, ‘@t’ varies from 0 to 2.

2w

work done per cycle is given by w = J F. % - dt but x = X sin (0t — ¢)
0

% =X cos (0t - ¢), and F = F, sin @t

2w
w=] (F,sin of)Xo cos (o1 — ¢))dt .. 423,
0

w=rF,%sin¢
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where X = Amplitude of vibratory motion
Fy, = Amplitude of vibrating force
¢ = Phase angle by which the motion lags the force

The maximum work is absorbed when the face angle ¢ is 90° and when wﬂ =1 and
sin ¢ = sin 90° = 1. !
Therefore, work done per cycle or energy dissipated per cycle = w(cw X) X.

Energy dissipated per cycle = 7 co X°. ..4.24

FORCED VIBRATION WITH COULOMB DAMPING

As we know from Chapter 3, Sec. 3.3.1, Case (b) on different types of damping,
Coulomb damping or dry friction damping is caused by friction between the sur-
faces that are dry or having insufficient lubrica-
tion. When a body slides on a dry surface, the
force of resistance between the surfaces or the
frictional force is proportional to the normal load.
This damping is called Coulomb damping and is
shown in Fig. 4.12.

F, sin ot

Fig. 4.122 Coulomb damping

When a single-degree-of-freedom system under Coulomb damping or dry friction
damping is subjected to a harmonic force of ‘F|, sin ¢’ the differential equation of a
motion is written as

In Eq. 4.25, the sign of friction force (+ URy) is positive, when the body moves from
left to right and it is vice versa as we know. In small values of Coulomb damping, the
exact solution for small damping force is small so that the motion is continuous. On
the other hand, in case of high value of Coulomb damping force, the motion does not
remain continuous. Also, if dry friction force is small compared to harmonic force,
an approximate solution is necessary. By determining an equivalent viscous damp-
ing ‘c.y’ in case of forced vibration with Coulomb damping, the means of energy
absorbed per cycle is same in both the cases.

Let ‘X” be the amplitude of steady-state vibration and ‘F” be the constant frictional
force. Then the energy absorbed per cycle is 4FX. For the similar amplitude of vibra-
tion, the energy absorbed per cycle for the case of equivalent viscous damping from
Eq.424is

energy dissipated per cycle = 7 co X* = T Ceq oX* since ¢ = Ceq

4F

Ceq ™ m ..4.26

Therefore, equating the two equations, 4FX = T ¢, 0X, =

We have known that in case of viscous damping the steady-state amplitude is given
by Eq. 4.5 in Sec. 4.2.



VIBRATION ISOLATION AND FORCE
TRANSMISSIBILITY

When an unbalanced machine is mounted on the foundation, the vibration of the
machine will be transmitted to the foundation. In order to minimise the transmission
of forces to the foundation, machines are often mounted on springs and dampers
as shown in the Fig. 4.15(a) The vibratory force transmitted to the foundation is by
springs and dampers because these are the only connections. At any instant give a
displacement ‘x’ to the mass ‘m’, and the FBD is as shown in Fig. 4.15(b).

Applying Newton’s second law of motion to mass ‘m’, £F = mx.

Fo sin th

F=F,sinot

|

cx kx

(b)

Fig. 4.15 Vibration isolation and transmissibility
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F—cx—kx=mx mx+cx+hkx=F,sin ot ..4.48
Since F =Fsin ot
this is a second-order nonhomogeneous differential equation of motion.
The solution is
xX=xtx,
Complementary function (already discussed in Sec. 4.2 case ‘a’)

where  x,

x, = Particular integral (steady state response already discussed in Sec.
4.2 case ‘D)

Considering the steady-state response or to find the particular integral ‘x,’

Letx,=x=Xsin (wf—¢) [.Fis the external force which is a sinusoidal one]
T

: +a)t—¢), i=— o Xsin (@t — 9)

3= wXcos (0f — @) = a)Xsin(

Substituting these value in Eq. 4.13,

m[-a? X sin (ot — ¢)] + c[stin (5+ar- ¢)] + kX sin (o — ¢) = F, sin ot
Rearranging the terms,
Fy sin @f — kX sin (@t — 9) — cXo sin (a)t— o+ g) +me? Xsin (0t —¢)=0 ..4.49

These forces can be vectorially represented as shown in Fig. 4.16(a),

kx

Fig. 4.26 Force and vector polygon



AC=F,=J(kX)* + (cXw)* But OA = Fy, AB = kX, BC = CaxX, CO = mXo?

The force transmitted to the foundation denoted by ‘F,’ by joining ‘AC” is the vecto-
rial sum of the spring force and the damping force and it is shown in the Fig. 4.16(b)
force polygon.

The transmissibility ratio or transmissibility is defined as the ratio of the force trans-
mitted to the foundation ‘F,” through elastic supports to the force transmitted to the
foundation through rigid supports ‘F,’ (exiting force) (See How to Draw the Vector
and Force Polygon.)

F,
. transmissibility TR = —
Fy

From right-angled triangle OAD in Fig. 4.16(b),
04% = AD* + DO* = (4B — BD)* + BC?
o> = (kX — mX@?)? + (cXw)%, Fy? = X [(k— ma*)* + (cw)?]
Fy Fy
- 2 2 X= 72 2
(k- ma*y? + (cow) (k- ma?)* + (co)

kv[ Sy

and

But

2 )
and let —=r.
wll o,’ n

=3

§~|

<
k

W1 -2 + 2&r)
Fo = kX\[(1 - A% + 2&)° 451

..4.50

From triangle ABC in Fig. 4.16(c),

= (kX)2 + (cXw)?, F? = k2x2[1+ ]F kX1 + & 452
From Eq. 4.49 and Eq. 4.50,

F kX1 2
TR =— = Q8 453
Foo gyl -7+ @&n?

F, 1+ Q&0?
VI(1 - 22+ (2r°

2&r

17

..4.54

The phase angle ¢ = tan™!
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o= tan™'

2—&] 455
17

o = tan”'(2&r).

cXw
and tan o0 = X’

2
The angle of lag is givenas a (§— ¢f) .. tan™' %] —tan"'(2&r) .. 4.56

The equations 4.54 and 4.55 indicate the transmissibility and phase lag of transmitted
force from the impressed force and can be plotted as shown in Fig. 4.17(a) and (b) for
various values of damping factors.

F

. . t (0}
1. Discussion on —-Versus ——.
FO wll

4.0

3.0

n
o

Transmissibility F/Fy —

jury
o

1.0 2.0 3.0
— Frequency ratio r= w/w),
I | | | |
0 1.0 2 2.0 3.0
Stiffness Damping Mass controlled
controlled| controlled
ol ®, —>

(a) Transmissibility versus frequency ration for various amount of damping factors
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Fig. 4.27(b) Phase angle frequency ratio for various amount of damping factors
F, 1+ (2&r?
Case (i) Whenr=o0inEq. 4.54 T .
0 AL+ 28

= 1, which is independent of the damping ratio ‘&

Ft Ft
Fy 1+0 Fp
Case (ii) When r=1 (Resonance, i.e. = @,) in Eq. 4.54

F, 1+ (2&r?

Fo i A7+ @&y

F, 1+@g  A1+@8’ oob
Fo \1+@e? & Fo
F
i.e. at resonance and at damping ratio = 0, F’ = oo
0

Force transmitted to the foundation with elastic supports = o, F, can be brought down
to nominal value by introducing damping into the system.

Case (iii) Whenr>>1(®>> w,)in Eq. 4.57
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F, 1+ (2&r?

Foo Na-m»2+ @&y

P>>1 o Lccclie 1/2=0and 1/r=0

E
rz(é + (2r)2) v rz(i + (25)2)

F, Ll .

A ] A e

F, 2
—t=7§for§<< 1, ~0and &=~0.
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TWO-DEGREE-
FREEDOM SYSTEMS

INTRODUCTION

Systems that require two independent coordinates to specify the system configura-
tion at any instant are called ‘two-degree-freedom systems’. In such a system there
are two masses which have two equations of motion, treated as coupled differential
equations. Each mass will have its own natural frequency. Sometimes nonharmonic
motion of the masses makes the system more complicated for solving problems.

(c)

—_—

o
=
—_

e)

Fig. 6.1 Two-degree-freedom systems

Example In a spring-mass system, k; — m; and k, — m, are shown in Fig. 6.1(a)
and Fig. 6.1(b). if the masses ‘m,” and ‘m,’ are constrained to move vertically or
horizontally (linear displacements), two independent coordinates ‘x,” and ‘x,’ are
necessary to specify their positions at any instant. ‘k;” and ‘k,’ are stiffnesses of the
spring. Therefore, the given system is a two-degree-freedom system. Other examples
are double pendulum and two-rotor system as shown in Fig. 6.1(c), (d), (e).

In Fig. 6.1(c), two masses of a simple pendulum are coupled together by means of
a spring ‘k’. Similarly, a shaft of torsional stiffness ‘k,” [Fig. 6.1(d)] has two rotors



which can have angular displacements ‘6,” and ‘8,” independent of each other. In
Fig. 6.1(e), two masses ‘m,’ and ‘m,’ of a simple pendulum are constrained to move
vertically. Thus, it is a two-degree-freedom system.

In general, the number of degrees of a freedom system can be stated as the number
of mass or masses in a system and multiplied by number of possible types of motion
of each mass or masses.

PRINCIPAL MODE OF VIBRATION, OR NORMAL
MODE OF VIBRATION

There are two equations of motion for a two-degree-freedom system, one for each
mass. As a result, there are two natural frequencies, for a two-degree-freedom system.
The natural frequencies are found by solving the frequency equation of an undamped
system or the characteristic equation of a damped system.

When the masses of a system are oscillating in such a manner that they reach maxi-
mum amplitudes simultaneously and pass their equilibrium points simultaneously or
all the moving parts of the system are oscillating in the same frequency and phase,
such a mode of vibration is called principal mode of vibration, or normal mode
of vibration.

If at the principal mode of vibration, the amplitude of one of the masses is considered
equal to unity, the mode of vibration is then called ‘normal mode of vibration’, i.c.
the amplitude ratio, X,/X; = Principal mode of vibration, if X; = 1(unity). Then the
amplitude ratio, X,/1 = Normal mode of vibration.

In case of two-degrees-freedom system, masses will vibrate in two different modes
called ‘principal modes’. If masses ‘m,’ and ‘m,’ shown in Fig. 6.1(a) are vibrating
in phase, such a mode of vibration is called first principal mode. When the masses
‘m,” and ‘m,’ are vibrating in the opposite phase, such a mode of vibration is called
second principal mode of vibration.
2 _ principal mode, and - - - - Normal mod
X, rincipal mode, and X, ormal mode.
- X, X, .

In first principal mode, - or - is positive, X, T and X5 T

XX

X, X

In first principal mode, - or - is negative, X ! and X5 T
XX

ORTHOGONALITY PRINCIPLE

The principal modes or normal modes of vibration for systems having two or more
degrees of freedom are orthogonal. This is known as orthogonality principle.

This is an important property while finding the natural frequencies.
For a two-degree-freedom system, orthogonality principle can be written as



FBD

Fig. p-6.1 Two-degree linear spring-mass system
Solution Now at any instant, give displacement ‘x,’ to the mass ‘m,’ and ‘x,’ to the
mass ‘m,’ to Fig. p-6.1(a). The FBD is as shown in Fig. p-6.1(b).
Applying Newton’s second law of motion to mass ‘m,’, assuming that x, > x,
XF =ma
by (e —x)) —kyxy =my X,
my Xy +kxy —ky (x;—x;) =0
my X, +kx, —kx, tkyx, =0
my Xy + (ky + k) xy —kyx, =0
But the given values of m, = m, k, =2k, k,=k.
mx, + 2k + k) x, —kx,=0, mx; + 3kx; — kx, =0 ...6.1
This is the differential equation of motion of the mass ‘m,’.
Again apply Newton’s second law of motion to the mass ‘m,’.
XF =ma
—ky (5= X)) =my X,
my Xy +ky (x,— %)) =0
My Xyt kyxy —kyxy =0
But the given values of k; = 2k, m,=2m, k,=k
2mx, + kx, —kx; =0 ..62

This is the differential equation of motion of the mass ‘m,’.



Assume that the motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies. Let one of these components be,

x, = A sin ot X, = B sin ot
x; = WA cos wt X, = WB cos Wt
X, =—@* Asinwt X,=-" Bsin ot
Using the values of x,, x, and x, in Eq. 6.1, we get
m(—A@? sin ®1) + 3k4 sin ot — kB sin ot =0
—m@* A sin ot + 3 kA sin ot = kB sin ot
A sin ot 3k — mw?®) = kB sin ot, 4 3k —ma®) = kB

. . A k
The amplitude ratio .. B~ m .63
Again using the values of x,, x, and x, in Eq. 6.2, we get
2m(—@” B sin @1) + k(B sin of) — k(4 sin @7) =0
—2ma” B sin @t + kB sin @t = kA4 sin ot

B sin @t (k — 2ma?) = kA sin @t, B(k — 2ma®) = kA

The amplitude ratio, g = % ..6.4
From equations 6.3 and 6.4,
k _k-mo’
3k—ma® k

Bk —ma?) (k- 2maw?) =K
3K - 2ma’ x 3k — ma’k + 2mPet =K, 2mPe0* — Thkma® + 2K2 =0

Tk K
4 2
—— o+ =
W -5 @ 5 =0
This is a quadratic equation in o2, where roots are given by
Tk ( Tk )2 42
+ -

B 2m 2m m> » Tk am:  m?
W = , W =—t |———————

2 4m 4
, Tk /49/8- 166 , 7k [33k2
o =7 t\———— 0 ==+
4m 16m? am  \16m>
) _ Tk 574k, Tk 5.74k

Tk S,
0] “am > am a)ln—E—S.74k/4m, 60%"—4m+ 4m

+

@ =0315 5 o2 ~3.185 5, o, =0.56 ﬁrad/s, w,,=1.78 K ad s
1n m " 2n m m m

where @,, and m,, are the first and second natural frequencies respectively.



To draw the mode shapes

(i) First mode shape. From Eq. 6.3

4__ k
B 3k—mao?
At o -, ~0315 3 A= £
3k—mx 03154~
% =269’ iec.at4=1,B=2.6 [Fig. p-6.1(c)]
(ii) Second mode shape. From Eq. 6.4, 1; = k—2kma)2
At o’ = @}, =3.185 %
At A=1
k
A k—2m><3.185m k— 637k
B k ok
A
B -5.37
A =-5.37 B [Fig. p-6.1(d)]
o y77/74
AN
A
5 /B Node
(c) Same phase (d) Out of phase

Fig. p-6.12 Mode shape

In the first mode of Fig. p-6.1(c) the full spring moves to the right side of the mean
line as it is ‘same phase’.

Whereas in the second mode of Fig. p-6.1(d), the second spring crosses the mean
line as it is ‘out of phase’. The crossed point is called ‘node’ point, i.e. there is no
displacement at that point.



SEMIDEFINITESYSTEM OR DEGENERATING
SYSTEM

This is defined as a system where one natural frequency is equal to zero. This is also
known as a degenerate system. Consider the system to represent two masses ‘m,’ and
‘m,’ and with a coupling spring ‘%’ as shown in Fig. 6.2(a).

X X5

|_> k '_> k (x, —x,)

m; MW M, «— M5 e m | —
m, X, m,X,

(a) (b)
Fig. 6.2 Semidefinite system

b

Now at any instant, give displacement ‘x,’ to the mass ‘m,’and ‘x,’ to the mass ‘m,
to the Fig. 6.2(a). The FBD is as shown in Fig. 6.2(b).

Assuming that x, > x, or x; > x, also can be taken, but x, > x, is easy to writing down
the differential equations.

Apply Newton’s second law of motion to the mass ‘m,’, i.e. XF = ma
myx, =—k(x;—x,), mx +k(x—x)=0 ...6.61

Similarly apply Newton’s second law of motion for the mass ‘m,’,

m2x2 :—k(xZ_x1)9 m2X2+k(X2_xl):0 662

Assume that motion is periodic and is composed of harmonic motions of varies
amplitudes and frequencies. Let one of these components be,

x, = 4 sin ot, X, = B sin ot
x, =Awcos ®t, x, =Bwcos wt
X, =—Aw’sin ot, X, =—Bw”sin ot
Substituting these values in equations 6.61 and 6.62, we get
(k—ma)4—kB=0 ..6.63
—kA + (k—m,0*)B=0 ..6.64



The frequency equation is obtained by equating to zero the determinants of the coef-
ficient “A" and “B" are
(k—m, rl:F] k
k (k — mya’)

j,.l mlﬁf #ﬂhﬂ'z'l'm'm_zmq. r&z_ﬂq. mﬁ";ﬂﬁ km:ﬁ?z Ji'mm.lz—ﬂ

=0, (k— m e’y (k— myor) — (— k) (—k) = 0

ar [mmqer —k{m,+my)|=0 . @ =0,asone of their natural frequencies is equal

_ Kimy + m;)
to zero as the statement of the semidefinite system and @, = HW rad/s.
Mode shapes Dividing Eq, 6,64 by Eq. 6.63, we get
—kA + (k — moer) Bi(k — m,a’) A — kB, % = — (m,/m,).
oy oy

_d—.—h,__E
p— ]

=) i
krig, =)
(&G
(i)

Fig. p-6.127 Cylinder system

wl

Solution  Let us at any instant give an angular displacement * 8, to the first cylinder
of mass ‘m’ and 8, to the second cylinder of mass ‘m” as shown in Fig. p-6.17{a).
Then FBI) is as shown in Fig, p-6.17(b).

Applying Newton's second law of motion to the cylinder (1), let 8, = 8,

IMp= 18, —kriB,—8)r=—1p8, —1.0+k'8-b'8 =0

;mr‘lﬁ'1 b kA0, ket -0, i’mé, RO, kB, -0 665

This is the differential equation of motion for the cylinder (1).
Applying Newtons second law of motion to the cylinder (2),
EMy= 1,8, kr(By—8)r=—18, [#,+k’0,— k'8 =0

%m'ﬁ'1+kﬁ‘z—kﬂl—ﬂ b6



This is the differential equation of motion for the cylinder (2).

Assume that motion is periodic and is composed of harmonic motions of various
amplitudes and frequencies, Let one of these components be,
@, = A sin ! @, = B sin @1
.E-jl=—,4&lzsin 0t E‘z=—Bﬂstin it
Using the values of 8, @,, 8, in Eq. 6.65,
%m (—Aa’)y + kd kB -0, A (ﬁ:—% mmF] - kB, %— ﬁ . 6.67

Using the values of 8,, 8,, 8, in Eq. 6.66,

%m( Bar) + kB — kd = 0, B[k %mmﬁ}—m, %—M 668

From equations 6.67 and 6.68,
2k 2k 3maor
2k Imar 2k

ﬂﬁrr:']" 4:"'Irr=']‘:l'.§ll=%‘ r'[:'Zﬂ:\j:::!md"ls

Since one of the natural frequencies is zero, the system is a semideflindte system.

2k - 3Imar) = (2K, 2k - 3me’ = £ 2k, Imar = 2k + 2k
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VIBRATION OF CONTINUOUS SYSTEMS

Introduction

Models of vibratory systems can be divided into two broad classes, lumped and
continuous, depending on the nature of the parameters. In the case of lumped systems, the
components are discrete, with the mass assumed to be rigid and concentrated at
individual points, and with the stiffness taking the form of massless springs connecting
the rigid masses. The masses and springs represent the system parameters, and we refer to
such models as discrete or lumped-parameter models. The motion of discrete systems is
governed by ordinary differential equations. Continuous systems, on the other hand,
differ from discrete systems in that the mass and elasticity are continuously distributed.
Such systems are also known as distributed-parameter systems, and examples include
strings, rods, beams, plates and shells. While discrete systems possess a finite number of
degrees of freedom, continuous systems have an infinite number of degrees of freedom
because we need an infinite number of coordinates to specify the displacement of every
point in an elastic body. The displacement in this case depends on two independent
variables, namely x and z. As a result, the motion of continuous systems is governed by
partial differential equations to be satisfied over the entire domain of the system, subject
to boundary conditions and initial conditions.

Although discrete systems and continuous system may appear entirely different in nature,
the difference is more in form than concept. As a matter of fact, a certain physical system
can be modeled either as discrete or as distributed, depending on the objectives of the
analysis. It turns out that discrete and continuous systems are indeed closely connected,
and thus it comes as no surprise that both systems possess natural frequencies and normal
modes of vibration.

In this topic we will study the free and forced vibration of continuous systems. Emphasis
will be placed on studying the vibration of taught strings, rods and beams. This covers a
broad class of engineering applications, as many practical systems can be modeled by one
or more of such elements in order to study the dynamic behavior



Vibration of Strings

The figure shows a fixed-fixed string of length L. The string is initially under tension T
and the aim is to study the transverse vibrations denoted by the displacement y(x,t),
measured from the equilibrium position. It is assumed that both displacement and slope
are small.

y
y(x,t) X

L

It is also assumed that the tension force in the string remains constant during vibration,
which follows from the previous assumptions of small displacements. As in all
continuous systems, the displacement variable depends on both the spatial (x) and
temporal (f) coordinates. A free body diagram of a string element is shown below.
Neglecting gravity effects, we can apply Newton’s second law on the string element to
obtain the governing equation of motion.

T
y+dy
0+?dx
Dae &
0 ox
y
/ dx
T
X+dx -
X
ApplyingT LF, =m-a, gives:
2
Tsin(0+%dxj—Tsin9=pdxa—Z (1)
ox ot

where p is the mass per unit length of the string. For small displacements, sin& =@,
hence we obtain:

2
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But 8 = @ hence:

ox
0%y 0%y
FEalarr ©
which can be written as:
Oy _12y 1
o> o @)

which is known as the one-dimensional wave equation and c¢ = |— is the velocity of
P

wave propagation along the string. The wave equation is a partial differential equation,
and the same form will be encountered in similar problems involving the dynamics of
distributed-parameter models. The equation must be satisfied over the entire domain and
is subject to boundary conditions as well as initial conditions. Accordingly, the
problem posed is both a boundary value problem (BVP) and an initial value problem
(IVP) from a mathematical point pf view.

We now seek the solution of the wave equation, which represents the variation of the
transverse displacement at any point along the string and at any time for an arbitrary
string that is set in motion by certain initial conditions and left to vibrate freely. This
solution is emulated by the using the principle of separation of variables. In this way, the
transverse displacement can be expressed as:

y(x, 1) =Y(x)-G(@) )

It follows that:

o’y dY

Zr_ .G 6

ox*  dx? ©)
and

0%y d’G

Z 2 _y. 7

or? dr’ )

Substitution into the equation of motion (4) yields:

d’y 1 d°G

®)

which can also be written as:

14 _11d°G

- 9
Y d ¢ G di? ©)

It is noted that the left-hand-side (LHS) of the above equation depends only on the spatial

variable x, whereas the RHS depends only on the temporal variable, t. In order to satisfy



the equation, both sides of equation (9) must be equal to a constant. Let this constant be
—(a)/ c)z. A negative constant was conveniently selected because this choice leads to an

oscillatory motion. The choice of a zero or positive constant does not yield a vibratory
motion, and therefore must be excluded. For example, if a zero constant was chosen, this
leads to:
11d °G

2

146G _,
¢ G dt

or

d’G

dr*

whose solution is given by:

G=ct+c,

which is rejected because it indicates a solution that increases linearly with time. It can be
shown that the choice of a positive constant gives rise to two terms; one exponentially
increasing and the other exponentially decreasing.

Adopting the negative constant choice, and substituting into the equation of motion gives:

1d%Y 2
— =—(w/c 10
= (@) (10)
which can be written as:
d’y 2
+(w/c) Y =0 11
dx2 ( / ) ( )
Furthermore,
1 1d°G 2
—— =—(w/c 12
¢’ G dr ( / ) (12)
which can similarly be expressed as:
d’G
+0°G=0 13
e (13)
These have the general solutions:
Y (x) = Asin(w/c)x+ Bcos(w/c)x (14)
And
G(t)=Csinawt + Dcos at (15)



The 4 constants A, B, C and D are to be determined from the boundary conditions (BC’s)
and initial conditions (IC’s). It also worthy to note that equation (14) defines the
deformation shape, whereas equation (15) defines the motion to be harmonic in time. It
becomes appropriate now to define the unknown constant ® as the natural frequency of
the system, and (a)/c) as the wave number or spatial frequency. The general solution
may then be expressed as:
y(x,1) =(Asin(w/c)x+ Bcos(w/c)x)-(Csin wt + D cos ar) (16)
Alternatively, and after some algebraic manipulation, the above solution may also be
written as:
y(x,t) =a, sin ((a)/c)x - a)t) +a, cos ((a)/c)x - a)t) + an

a, sin((@/c)x+ t)+a, cos((w/c)x+ wr)

Once again, the solution must contain 4 unknown constants.

Example: Fixed-fixed string

Let us now consider the case of a string that is fixed at both ends, as shown.

y
y(x’ t) X

L

The imposed boundary conditions indicate that the string displacement at both ends must
be equal to zero, or:
v(0,¢) =0and y(L,7) =0. The general solution is:
y(x,1) =Y (x)-G(1)
= (A sin(w/c)x+ B cos(a)/c)x) . (C sin wt + D cos a)t)
Substitution of the first BC into the general solution gives:

0=B-(Csinawt+Dcosor)

which implies B = 0. The general solution hence becomes:



y(x,1) =(Asin(w/c)x)-(Csin @t + D cos o)

Substitution of the second BC into the solution gives:

0 =(Asin(wL/c))-(Csin wt + D cos ot )

which implies:

sin(wL/c) =0

hence

oL/c=nz , n=1,273,...

The above equation is termed the frequency equation or characteristic equation of the
system, as it gives values of the system natural frequencies. Clearly, the system possesses

an infinite number of natural frequencies, as suggested earlier. Having obtained the

natural frequencies, the solution at any frequency or mode is expressed by:
y,(x,1) = (A, sin(nzx/L))(C, sinw,t + D, cos w,1)
=Y,(x)-G, (1)
Therefore, at each natural frequency, there corresponds a certain mode shape or an
eigenfunction defined by
Y, (x) = A, sin(nzx/L)
where each “n” represents a normal mode vibration with a natural frequency

_hrxce
, ——L

and mode shape
Y, (x)= A, sin(nzx/L)
where A, are arbitrary constants. The figure below shows the first few modes of the

string, as obtained from the above analysis.



The general solution is given by:

y,(x,1) = (A, sin(nzx/L))(C, sinw,t + D, cos o,t)

where the terms in the first bracket define the displacement pattern at mode “n”, and the
terms on the last bracket define a harmonic motion at the corresponding natural

frequency. The free vibration solution is finally obtained as the sum of all modes of

vibration, or:
y(x,1)=>(C, sinw,t + D, cos w,t )sin(nrrx/ L)
n=1

where C,, D, are constants to be determined from the IC’s.

The eigenfunctions can also be shown to possess an orthogonality property (see next
section) which is given by:

nm

n=m

[¥,00%, (x)dx = { 0
) h

n

For a fixed-fixed string, this becomes:



0 n#m

! sin(ux/ L)sin(mzrx/ Ldx = {L/z n=m

In order to study the complete free vibration problem, the initial conditions must also be

defined. Assume that the string is subjected to the following initial conditions:
yx,0)=fx) , ¥x0)=gx)

Substitution into the general solution gives:
f(x)= i D, sin(nzx/L)
=1
and
g(x)= iCna)n sin(nzx/L)
P

In order to obtain the constants C,, D, we multiply the above equations by sin(nzx/L)

and integrate over the string length. By using the orthogonality codition, we get:
L
2 .
D, = zj f(x)sin(nzx/L)dx
0

and

LL J- g(x)sin(nzx/L)dx
)

n 0

C, =

It thus follows that the constants C,, D, determine the contribution of each mode to the
general solution. Now consider the special case where the initial conditions impose a
displacement pattern that coincides with one of the natural modes, say mode “k”, and that
the initial velocity is zero. In this way, we have:

f(x)=sin(kzx/L)

and
gx)=0
It follows that:
0 k#n
D, =
1 k=n
and
C =0

n



Therefore, the general solution reduces to:
y(x,t) =sin(kzx/L)cos @t

“kth”

That is, the string vibrates in its mode due to the fact that the initial conditions cause

“k™ mode to be excited. The continuous system in this special case behaves like

only the
a single DOF system. The same notion can be observed for a multi-DOF system. If, on
the other hand, an impulse is given to the system, it can be shown that a wide spectrum of
frequencies or modes are excited, and hence the system response will contain a
summation of a large number of modes. In practice, the contribution of the higher modes

is usually smaller, and the system response will be almost predominantly be described by

the fundamental (i.e. first) mode, together with only a few higher modes.



Orthogonality of Eigenfunctions
Let us now prove the orthogonality condition for a fixed-fixed string. The same technique
can be applied to other forms of boundary conditions. Recall Eq. (11) obtained
previously:
d’Y
dx*

+(wfc)' Y =0 (18)

This equation must be satisfied at all natural frequencies or all normal modes of

(13 2

vibration. Consequently, at an arbitrary mode “m”, we have @,,Y as the natural

cC__99

frequency and associated eigenfuction, respectively. Similarly, at mode “n”, we

havew,, Y, . Let us first assume that these two modes are distinct. It follows from Eq. (18)

that:
(0, fe) ¥, =0 (19)

and
‘i;y =(@,/e)' Y, = (20)

Multiplying Eq. (19) by Y, and integrating over the string length yields:
¢ dY 2
~[¥, ==dx = j (@,/c) Y, Y,dx 1)

n 2
0 d‘x 0

The LHS of the above equation can be integrated by parts:

L L L
LHS —_| v dY| Ide ax, . zj-dldY
0

1 dx (22)
" dx | dx dx
and the first term vanishes due to the boundary conditions defined (both ends fixed). It

follows that:
L L
ar, 4, 4 j )Y, Y,dx (23)

o dx dx

0

Similarly, we can multiply equation (20) by Y and integrate over the string length. This

yields:

Y Y dx (24)

m

dY dY
o dx dx I

10



It is noted that the LHS of Eqgs. (23) and (24) are identical, irrespective of the order of

multiplication. Subtracting Eq. (24) from Eq. (23) gives:

Y, Y dx (25)

m-n

L
a)—a)J-
0

But @, w, are two distinct modes, i.e. @, # o, , therefore:

L
[Yrdc=0 , m=n (26)
0

which proves the orthogonality condition for eigenfunctions of a fixed-fixed string. This
condition also holds true for other types of BC’s. Moreover, since eigenfunctions can be

arbitrarily scaled (or normalized), we can write:

m

L
IYde h, , m=n 27
0

where h, is a constant.

Elastic or Inertial Attachments

Finally, let us now consider other forms of boundary conditions. Figure 6 shows a string
that is fixed at one end and attached to a spring at the other. The boundary condition at
the fixed end x=0 is given by y(0,£)=0. This is called a geometric boundary
condition, because it describes a specified displacement. Such a condition is also known

as an essential or imposed boundary condition.

3/—% S

Elastic attachments.

11



The boundary condition at the other end is not so obvious at first sight. Indeed it becomes
appropriate to draw a free-body diagram of the string in order to investigate the force
interaction. Such a free-body diagram is shown in Fig.7. At x=L we need to balance
forces in the vertical direction. Thus we have:

¥
ox

This is called a natural boundary condition (also known as dynamic or additional

(L,1) =—ky(L,1) (28)

boundary condition) as it describes forces and moments acting on the system. We can
then proceed with the solution in the same way described above in order to obtain the

natural frequencies, eigenfunctions and response to initial conditions.

y
kz =—ky(L,t)
N ’/ fy(x’f)\\\ :Tt ¢
) JE 12
\\\ 0:@(14 S
\\\_QX«
T

Figure 7. Free-body diagram.

12



Vibration of Rods
In this section, let us study the free longitudinal vibration of rods (bars). Consider a

fixed-free rod of length L undergoing longitudinal vibration, as shown below.

L

N o

§ Undeformed

3 s O X

1 e

§ ___________________ é

R Deformed
u(x,t)

The nomenclature adopted in this case is listed below.

P Density (mass per unit volume)

P Axial force

u(x,t) | Longitudinal displacement

A Cross-sectional area

E Young’s modulus of elasticity

The longitudinal displacement, which is assumed to be small, depends on both the spatial
(x) and temporal (¢) variables. It is assumed that the displacement is small. In order to
study the rod vibration, we need to write down its equation of motion. Consider a rod

element, as shown in below.

ou
y u+6—dx
LINNC]
P > P+2—I;dx

X, dx

13



An infinitesimal element of the rod, shown by the hatched area, undergoes longitudinal

motion, and is drawn in its deformed configuration, as shown. The change in length of

the element is expressed as:

AL =—dx
ox
The axial strain is then given by:
AL Ou
E=—=—
L Ox

The axial stress in the element can be written as:

P
o=—
A
Applying Hooke’s law, o = E¢, yields:
P_pau
A ox
Rearranging:
EA6—M =P
ox
Differentiating with respect to x gives:
2
padu P
ox~ Ox

Now apply Newton’s second law in the axial direction:

oP o’u

or

adx = (pAdx)

Combining the previous equations gives:

o’u o’u
Mo =P
which is rearranged to give:
Fu_1 0w
ox* ¢’ or

14

(29)

(30)

(31

(32)

(33)

(34)

(35)

(36)

(37)



where c¢=_[— is the velocity of wave propagation along the rod. Note the similarity
P

between the wave equation of a string and that of a rod. Once again, the wave equation is
a second order partial differential equation that must be satisfied over the entire rod
domain, subject to boundary and initial conditions. Also note that the displacement is a

function of two independent variables, x and ¢.

Solution of the wave equation is emulated by using separation of variables, and the
process follows directly from that adopted for strings. Thus we seek a solution in the
form:
u(x,t)=U(x)-G(1) (38)
Upon differentiating partially with respect to t and x yields:
o’u _ d*U ‘

— 39
ox*  dx’ %)
and
o’u d’G
—=U- 40
or’ dt’ “0)
Substitution into the equation of motion gives:
d’U 1 d°G
G==U 41
dx’ ¢ ar “h
which is rearranged in the form:
14U _114dG 42)
U ds G d°

Once again, we note that the LHS depends only on x, whereas the RHS depends only on

t. In order to satisfy this equation, both sides must be equal to a constant. Let this constant

be —(a)/ c)2 for oscillatory motion to prevail. It then follows that:

d*U

1 2
E dx2 ——(CO/C) (43)
or:
d lzj +(w/c)’U=0 (44)
X

15



and

5o
or:
d22G +0’G=0 (46)
dt
These have the general solutions:
U(x)= A sin(@/c)x+ A, cos(w/c)x 47)
and
G(t) = A;sinwt + A, cos ot (48)

The solution U (x) defines the deformation shape, whereas G(¢) defines the motion to be
harmonic in time. The four constants A,A,,A;,A, are to be determined from the
boundary and initial conditions. The natural frequency @ is yet to be determined, and the
expression (a)/ c) is known as the wave number or spatial frequency. The general
solution is finally obtained by:

u(x,1) = (A sin(w/c)x + A, cos(w/c)x)- (A, sin wrt + A, cos or ) (49)
After some algebraic manipulation, the solution may also be expressed as:

y(x,1) = a, sin((@/c)x— art ) +a, cos ((w/c)x— wrt ) + 50
a, sin ((@w/c)x+ ot ) +a, cos((w/c)x+ wt)

16



Example: Fixed-free Rod

As an example, let us investigate the case of a fixed-free rod.

1774

> X, U

Y

y77777

The boundary conditions for this case are:

u(0,1)=0

which results in:

0=A4,-G()

from which we get:

A =0

The general solution then becomes:

u(x,1) = (A sin(w/c)x)-G(r)

At the free end x = L the axial force must vanish P =0 . But

P= EAg—u = EA(w/c)( A cos(w/c)x)-G(t)
x

hence:

0 = EA(w/c)(A cos(wL/c))-G ()

which implies:

cos(wL/c)=0

which is the frequency equation or characteristic equation of the system. Solution of
this equation is:

otfe=(

2n—1

jﬂ' , n=1273,...

Hence the natural frequencies of the system are given by:

a)n:[zn_ljﬁ , n=12.3,...
2 )L

17



and the normal modes of vibration are:

U,(x)=(A, sin(@,/c)x)

The solution of each mode becomes:

u,(x,1)= A, sin((2n—1)zx/2L)-(C,, sinw,t+ D, cos o,r)

In other words, at each natural frequency, there corresponds a mode shape or an
eigenfunction defined by:

U,(x)=A,sin(2n-1zx/2L)

and each n represents a normal mode vibration with a natural frequency

2n—1\rc .
w, =£ > j? where A, are arbitrary constants.

18



Rod with Non-uniform Cross Section

Consider a rod with a non-uniform cross section, as shown below. The equation of

motion can be obtained using the same techniques described previously.

u+%dx
OX|

’_M>‘ >~

P<—EW/ - P+a—§:dx
///,. ‘

Applying Newton’s second law yields:

oP 0’

™ dx = (pA(x)dx) a_t? (51)
which gives:

oP o’u

o A G )

Note that A(x) describes the variation of cross sectional area along the rod axis. Upon

application of Hooke’s law, we obtain:

ou
P=FA(x)—
ox 3
Differentiating with respect to x gives:
oP o© ou
—=—| FA(x)—
ox Gx( ( )axj S

and hence the equation of motion is expressed as:

19



o0u 8(

%)
A(x)— =—| EA(x)—
PA(X) % o (x) j (55)

u
ox
Other Boundary Conditions

Finally, let us consider the case where inertial attachments are appended to the rod, as

shown below.

m

y777777777777777777§

The boundary condition at the fixed end is straight forward. Examination of the boundary
condition at the free end leads us to write the equation of motion of the attached mass

using Newton’s second law. The resulting equation can be expressed as:

ou o*u
EA—(L,t) =—m—(L,t
8x( ) v (L,1) (56)

Torsional Vibration of Rods

Now consider a rod that is subjected to a twisting moment T, as shown below.

20



L~

¥ or
T+—dx
T ox
T
The angle of twist can be expressed as:
Tdx
dd=——-
GJ (57)
where
6 : angle of twist
G : modulus of rigidity
J : polar moment of inertia
We can then write:
oT 0’0
adx =GJ ydx (58)
Applying Newton’s law to the rod element, we obtain:
0’0 0’0
dxGJ —— = pJdx— “
ox® or’ &)
hence
50 G %6
o J ox’ ©0

which is in the form:

21



0’0 1 0%
W ar o

,G
with € = ; representing the wave velocity. It is noted that this equation has exactly

the same form as equation (37) representing the axial vibration of rods, with the

u—>0 » E— G . Thus the evaluating of the natural frequencies, mode shapes and

system response follows directly from the equations previously mentioned.

Vibration of Beams

This section deals with the transverse vibration of beams. The figure shows an elastic
beam drawn in both the undeformed and deformed configurations. Although the figure
suggests a cantilever arrangement, the analysis is suited for arbitrary boundary
conditions. Transverse displacements, measured from the neutral axis at equilibrium, are

designated as w(x,1).

From strength of materials, and adopting the Euler-Bernoulli beam theory, we have:

M =—EI ‘Z:Vf (62)
and:

v :%_f‘j (63)
where

E =Young’s modulus of elasticity [N/m?*]

22



I = Second moment of area [m4]
M =bending moment [Nm]

W = Transverse displacement [m]

V' = Shear force [N]

Consider an infinitesimal beam element as shown in Fig. 15.

V
M+aﬂdx
ox

dx
- - V+8_de
Oox

Figure 15. Forces and moments acting on a beam element.

Neglecting rotary inertia, we can apply Newton’s law in the vertical (transverse) direction

to obtain the equation of motion:

ov o*w
—dx = pAdx 64
ox r ot ©4)
where A is the cross-sectional area. From equations (57) and (58), we have:
2
V:aﬂzg _Elﬁ_vzv (65)
ox Ox ox
For constant £/ we obtain:
ow
V=—El— 66
ox’ (66)
or:
ov o*w
— =—FI 67
ox ox* ©7)

Combining equation (59) with (62) yields the equation that governs the free transverse

vibration of a uniform elastic beam as:

23



o*w(x, 1) O*w(x, 1)
—-FEI =pA
ox* p o

(68)

Solution of the above equation can be emulated using the technique of separation of
variables, as described in previous sections. In this way, the solution can be expressed as:
w(x,t) =W(x)F(t) (69)
Substituting (64) into (63) yields:
EI 1d'W _1d°F

PAW dx*  F dr’

(70)

We observe that the left side of (65) depends only on x, while the right side depends only

on t. Because x and t are independent variables, we conclude that both sides of (65) must

be equal to a constant. Let this constant be —®?. It follows that:
d’F
dar’

+@’'F =0 (71)

which has a solution in the form:

F(t)=C,sinwt + C, cos wt (72)

where C; and C, are constants to be determined from the initial conditions.

Furthermore, we have:

4

d‘;V—p—Aa)zW=0 (73)

dx EI

A
Denotin 4 :p—a)2 we get:
gp I, g

AL LW =0 (74)
dx*

The solution of (69) can be shown to be:
W(x) = A sin fx+ A, cos Bx+ A, sinh Sx+ A, cosh [Sx (75)

where Aj, Ay, Az and A4 are constants to be determined from the boundary conditions.

1.12 Example: Cantilever Beam

24



The boundary conditions for a cantilever beam are given by:

At x=0, W=0, d—W=O
dx
2 3
Ao, TW o AW
dx dx’

Upon substitution into (70), and after some algebraic manipulation, we obtain the

eigenfunctions for a cantilever beam as:

sin B L+sinh S L
cos f,L+cosh B L

W (x)=A, {sin B,x—sinh 8 x — (cos 8,x—cosh ﬂnx)} (76)

where B 1is obtained by solving
cos ffLcosh L =-1 (77)
Equation (72) can be solved numerically to give the eigenvalues BL,[,L,..., 3 L. The

first three solutions can be shown to be:

B, =1.8751/L
B, =4.6941/L
B, =7.8548/L

’EI
Now the natural frequencies can be obtained from @, = /3’ — and the first three
P

EI
o, =(1.8751)° / 7
P
1
PAL'
1

E
E

values are obtained as:

w, =(4.6941
(

)
o, =(7.8548)

2
2

pAL'

Figure 16 shows a typical frequency response plot of a cantilever beam, acted upon by a
harmonic force at its tip. The amplitude of the tip motion is plotted as a function of the
excitation frequency. The peaks occur at the natural frequencies of the system, and the

deformation pattern of the beam (eigenfunctions) at each frequency is plotted at the top.
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®3 Frequency

AmplitAude

Figure 16. Frequency response of a beam.
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VIBRATION OF CONTINUOUS SYSTEMS

Introduction

Models of vibratory systems can be divided into two broad classes, lumped and
continuous, depending on the nature of the parameters. In the case of lumped systems, the
components are discrete, with the mass assumed to be rigid and concentrated at
individual points, and with the stiffness taking the form of massless springs connecting
the rigid masses. The masses and springs represent the system parameters, and we refer to
such models as discrete or lumped-parameter models. The motion of discrete systems is
governed by ordinary differential equations. Continuous systems, on the other hand,
differ from discrete systems in that the mass and elasticity are continuously distributed.
Such systems are also known as distributed-parameter systems, and examples include
strings, rods, beams, plates and shells. While discrete systems possess a finite number of
degrees of freedom, continuous systems have an infinite number of degrees of freedom
because we need an infinite number of coordinates to specify the displacement of every
point in an elastic body. The displacement in this case depends on two independent
variables, namely x and z. As a result, the motion of continuous systems is governed by
partial differential equations to be satisfied over the entire domain of the system, subject
to boundary conditions and initial conditions.

Although discrete systems and continuous system may appear entirely different in nature,
the difference is more in form than concept. As a matter of fact, a certain physical system
can be modeled either as discrete or as distributed, depending on the objectives of the
analysis. It turns out that discrete and continuous systems are indeed closely connected,
and thus it comes as no surprise that both systems possess natural frequencies and normal
modes of vibration.

In this topic we will study the free and forced vibration of continuous systems. Emphasis
will be placed on studying the vibration of taught strings, rods and beams. This covers a
broad class of engineering applications, as many practical systems can be modeled by one
or more of such elements in order to study the dynamic behavior



Vibration of Strings

The figure shows a fixed-fixed string of length L. The string is initially under tension T
and the aim is to study the transverse vibrations denoted by the displacement y(x,t),
measured from the equilibrium position. It is assumed that both displacement and slope
are small.

y
y(x,t) X

L

It is also assumed that the tension force in the string remains constant during vibration,
which follows from the previous assumptions of small displacements. As in all
continuous systems, the displacement variable depends on both the spatial (x) and
temporal (f) coordinates. A free body diagram of a string element is shown below.
Neglecting gravity effects, we can apply Newton’s second law on the string element to
obtain the governing equation of motion.

T
y+dy
0+?dx
Dae &
0 ox
y
/ dx
T
X+dx -
X
ApplyingT LF, =m-a, gives:
2
Tsin(0+%dxj—Tsin9=pdxa—Z (1)
ox ot

where p is the mass per unit length of the string. For small displacements, sin& =@,
hence we obtain:

2
20 _ 2

00 _ 2
x o @)



But 8 = @ hence:

ox
0%y 0%y
FEalarr ©
which can be written as:
Oy _12y 1
o> o @)

which is known as the one-dimensional wave equation and c¢ = |— is the velocity of
P

wave propagation along the string. The wave equation is a partial differential equation,
and the same form will be encountered in similar problems involving the dynamics of
distributed-parameter models. The equation must be satisfied over the entire domain and
is subject to boundary conditions as well as initial conditions. Accordingly, the
problem posed is both a boundary value problem (BVP) and an initial value problem
(IVP) from a mathematical point pf view.

We now seek the solution of the wave equation, which represents the variation of the
transverse displacement at any point along the string and at any time for an arbitrary
string that is set in motion by certain initial conditions and left to vibrate freely. This
solution is emulated by the using the principle of separation of variables. In this way, the
transverse displacement can be expressed as:

y(x, 1) =Y(x)-G(@) )

It follows that:

o’y dY

Zr_ .G 6

ox*  dx? ©)
and

0%y d’G

Z 2 _y. 7

or? dr’ )

Substitution into the equation of motion (4) yields:

d’y 1 d°G

®)

which can also be written as:

14 _11d°G

- 9
Y d ¢ G di? ©)

It is noted that the left-hand-side (LHS) of the above equation depends only on the spatial

variable x, whereas the RHS depends only on the temporal variable, t. In order to satisfy



the equation, both sides of equation (9) must be equal to a constant. Let this constant be
—(a)/ c)z. A negative constant was conveniently selected because this choice leads to an

oscillatory motion. The choice of a zero or positive constant does not yield a vibratory
motion, and therefore must be excluded. For example, if a zero constant was chosen, this
leads to:
11d °G

2

146G _,
¢ G dt

or

d’G

dr*

whose solution is given by:

G=ct+c,

which is rejected because it indicates a solution that increases linearly with time. It can be
shown that the choice of a positive constant gives rise to two terms; one exponentially
increasing and the other exponentially decreasing.

Adopting the negative constant choice, and substituting into the equation of motion gives:

1d%Y 2
— =—(w/c 10
= (@) (10)
which can be written as:
d’y 2
+(w/c) Y =0 11
dx2 ( / ) ( )
Furthermore,
1 1d°G 2
—— =—(w/c 12
¢’ G dr ( / ) (12)
which can similarly be expressed as:
d’G
+0°G=0 13
e (13)
These have the general solutions:
Y (x) = Asin(w/c)x+ Bcos(w/c)x (14)
And
G(t)=Csinawt + Dcos at (15)



The 4 constants A, B, C and D are to be determined from the boundary conditions (BC’s)
and initial conditions (IC’s). It also worthy to note that equation (14) defines the
deformation shape, whereas equation (15) defines the motion to be harmonic in time. It
becomes appropriate now to define the unknown constant ® as the natural frequency of
the system, and (a)/c) as the wave number or spatial frequency. The general solution
may then be expressed as:
y(x,1) =(Asin(w/c)x+ Bcos(w/c)x)-(Csin wt + D cos ar) (16)
Alternatively, and after some algebraic manipulation, the above solution may also be
written as:
y(x,t) =a, sin ((a)/c)x - a)t) +a, cos ((a)/c)x - a)t) + an

a, sin((@/c)x+ t)+a, cos((w/c)x+ wr)

Once again, the solution must contain 4 unknown constants.

Example: Fixed-fixed string

Let us now consider the case of a string that is fixed at both ends, as shown.

y
y(x’ t) X

L

The imposed boundary conditions indicate that the string displacement at both ends must
be equal to zero, or:
v(0,¢) =0and y(L,7) =0. The general solution is:
y(x,1) =Y (x)-G(1)
= (A sin(w/c)x+ B cos(a)/c)x) . (C sin wt + D cos a)t)
Substitution of the first BC into the general solution gives:

0=B-(Csinawt+Dcosor)

which implies B = 0. The general solution hence becomes:



y(x,1) =(Asin(w/c)x)-(Csin @t + D cos o)

Substitution of the second BC into the solution gives:

0 =(Asin(wL/c))-(Csin wt + D cos ot )

which implies:

sin(wL/c) =0

hence

oL/c=nz , n=1,273,...

The above equation is termed the frequency equation or characteristic equation of the
system, as it gives values of the system natural frequencies. Clearly, the system possesses

an infinite number of natural frequencies, as suggested earlier. Having obtained the

natural frequencies, the solution at any frequency or mode is expressed by:
y,(x,1) = (A, sin(nzx/L))(C, sinw,t + D, cos w,1)
=Y,(x)-G, (1)
Therefore, at each natural frequency, there corresponds a certain mode shape or an
eigenfunction defined by
Y, (x) = A, sin(nzx/L)
where each “n” represents a normal mode vibration with a natural frequency

_hrxce
, ——L

and mode shape
Y, (x)= A, sin(nzx/L)
where A, are arbitrary constants. The figure below shows the first few modes of the

string, as obtained from the above analysis.



The general solution is given by:

y,(x,1) = (A, sin(nzx/L))(C, sinw,t + D, cos o,t)

where the terms in the first bracket define the displacement pattern at mode “n”, and the
terms on the last bracket define a harmonic motion at the corresponding natural

frequency. The free vibration solution is finally obtained as the sum of all modes of

vibration, or:
y(x,1)=>(C, sinw,t + D, cos w,t )sin(nrrx/ L)
n=1

where C,, D, are constants to be determined from the IC’s.

The eigenfunctions can also be shown to possess an orthogonality property (see next
section) which is given by:

nm

n=m

[¥,00%, (x)dx = { 0
) h

n

For a fixed-fixed string, this becomes:



0 n#m

! sin(ux/ L)sin(mzrx/ Ldx = {L/z n=m

In order to study the complete free vibration problem, the initial conditions must also be

defined. Assume that the string is subjected to the following initial conditions:
yx,0)=fx) , ¥x0)=gx)

Substitution into the general solution gives:
f(x)= i D, sin(nzx/L)
=1
and
g(x)= iCna)n sin(nzx/L)
P

In order to obtain the constants C,, D, we multiply the above equations by sin(nzx/L)

and integrate over the string length. By using the orthogonality codition, we get:
L
2 .
D, = zj f(x)sin(nzx/L)dx
0

and

LL J- g(x)sin(nzx/L)dx
)

n 0

C, =

It thus follows that the constants C,, D, determine the contribution of each mode to the
general solution. Now consider the special case where the initial conditions impose a
displacement pattern that coincides with one of the natural modes, say mode “k”, and that
the initial velocity is zero. In this way, we have:

f(x)=sin(kzx/L)

and
gx)=0
It follows that:
0 k#n
D, =
1 k=n
and
C =0

n



Therefore, the general solution reduces to:
y(x,t) =sin(kzx/L)cos @t

“kth”

That is, the string vibrates in its mode due to the fact that the initial conditions cause

“k™ mode to be excited. The continuous system in this special case behaves like

only the
a single DOF system. The same notion can be observed for a multi-DOF system. If, on
the other hand, an impulse is given to the system, it can be shown that a wide spectrum of
frequencies or modes are excited, and hence the system response will contain a
summation of a large number of modes. In practice, the contribution of the higher modes

is usually smaller, and the system response will be almost predominantly be described by

the fundamental (i.e. first) mode, together with only a few higher modes.



Orthogonality of Eigenfunctions
Let us now prove the orthogonality condition for a fixed-fixed string. The same technique
can be applied to other forms of boundary conditions. Recall Eq. (11) obtained
previously:
d’Y
dx*

+(wfc)' Y =0 (18)

This equation must be satisfied at all natural frequencies or all normal modes of

(13 2

vibration. Consequently, at an arbitrary mode “m”, we have @,,Y as the natural

cC__99

frequency and associated eigenfuction, respectively. Similarly, at mode “n”, we

havew,, Y, . Let us first assume that these two modes are distinct. It follows from Eq. (18)

that:
(0, fe) ¥, =0 (19)

and
‘i;y =(@,/e)' Y, = (20)

Multiplying Eq. (19) by Y, and integrating over the string length yields:
¢ dY 2
~[¥, ==dx = j (@,/c) Y, Y,dx 1)

n 2
0 d‘x 0

The LHS of the above equation can be integrated by parts:

L L L
LHS —_| v dY| Ide ax, . zj-dldY
0

1 dx (22)
" dx | dx dx
and the first term vanishes due to the boundary conditions defined (both ends fixed). It

follows that:
L L
ar, 4, 4 j )Y, Y,dx (23)

o dx dx

0

Similarly, we can multiply equation (20) by Y and integrate over the string length. This

yields:

Y Y dx (24)

m

dY dY
o dx dx I

10



It is noted that the LHS of Eqgs. (23) and (24) are identical, irrespective of the order of

multiplication. Subtracting Eq. (24) from Eq. (23) gives:

Y, Y dx (25)

m-n

L
a)—a)J-
0

But @, w, are two distinct modes, i.e. @, # o, , therefore:

L
[Yrdc=0 , m=n (26)
0

which proves the orthogonality condition for eigenfunctions of a fixed-fixed string. This
condition also holds true for other types of BC’s. Moreover, since eigenfunctions can be

arbitrarily scaled (or normalized), we can write:

m

L
IYde h, , m=n 27
0

where h, is a constant.

Elastic or Inertial Attachments

Finally, let us now consider other forms of boundary conditions. Figure 6 shows a string
that is fixed at one end and attached to a spring at the other. The boundary condition at
the fixed end x=0 is given by y(0,£)=0. This is called a geometric boundary
condition, because it describes a specified displacement. Such a condition is also known

as an essential or imposed boundary condition.

3/—% S

Elastic attachments.

11



The boundary condition at the other end is not so obvious at first sight. Indeed it becomes
appropriate to draw a free-body diagram of the string in order to investigate the force
interaction. Such a free-body diagram is shown in Fig.7. At x=L we need to balance
forces in the vertical direction. Thus we have:

¥
ox

This is called a natural boundary condition (also known as dynamic or additional

(L,1) =—ky(L,1) (28)

boundary condition) as it describes forces and moments acting on the system. We can
then proceed with the solution in the same way described above in order to obtain the

natural frequencies, eigenfunctions and response to initial conditions.

y
kz =—ky(L,t)
N ’/ fy(x’f)\\\ :Tt ¢
) JE 12
\\\ 0:@(14 S
\\\_QX«
T

Figure 7. Free-body diagram.
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Vibration of Rods
In this section, let us study the free longitudinal vibration of rods (bars). Consider a

fixed-free rod of length L undergoing longitudinal vibration, as shown below.

L

N o

§ Undeformed

3 s O X

1 e

§ ___________________ é

R Deformed
u(x,t)

The nomenclature adopted in this case is listed below.

P Density (mass per unit volume)

P Axial force

u(x,t) | Longitudinal displacement

A Cross-sectional area

E Young’s modulus of elasticity

The longitudinal displacement, which is assumed to be small, depends on both the spatial
(x) and temporal (¢) variables. It is assumed that the displacement is small. In order to
study the rod vibration, we need to write down its equation of motion. Consider a rod

element, as shown in below.

ou
y u+6—dx
LINNC]
P > P+2—I;dx

X, dx

13



An infinitesimal element of the rod, shown by the hatched area, undergoes longitudinal

motion, and is drawn in its deformed configuration, as shown. The change in length of

the element is expressed as:

AL =—dx
ox
The axial strain is then given by:
AL Ou
E=—=—
L Ox

The axial stress in the element can be written as:

P
o=—
A
Applying Hooke’s law, o = E¢, yields:
P_pau
A ox
Rearranging:
EA6—M =P
ox
Differentiating with respect to x gives:
2
padu P
ox~ Ox

Now apply Newton’s second law in the axial direction:

oP o’u

or

adx = (pAdx)

Combining the previous equations gives:

o’u o’u
Mo =P
which is rearranged to give:
Fu_1 0w
ox* ¢’ or

14

(29)

(30)

(31

(32)

(33)

(34)

(35)

(36)

(37)



where c¢=_[— is the velocity of wave propagation along the rod. Note the similarity
P

between the wave equation of a string and that of a rod. Once again, the wave equation is
a second order partial differential equation that must be satisfied over the entire rod
domain, subject to boundary and initial conditions. Also note that the displacement is a

function of two independent variables, x and ¢.

Solution of the wave equation is emulated by using separation of variables, and the
process follows directly from that adopted for strings. Thus we seek a solution in the
form:
u(x,t)=U(x)-G(1) (38)
Upon differentiating partially with respect to t and x yields:
o’u _ d*U ‘

— 39
ox*  dx’ %)
and
o’u d’G
—=U- 40
or’ dt’ “0)
Substitution into the equation of motion gives:
d’U 1 d°G
G==U 41
dx’ ¢ ar “h
which is rearranged in the form:
14U _114dG 42)
U ds G d°

Once again, we note that the LHS depends only on x, whereas the RHS depends only on

t. In order to satisfy this equation, both sides must be equal to a constant. Let this constant

be —(a)/ c)2 for oscillatory motion to prevail. It then follows that:

d*U

1 2
E dx2 ——(CO/C) (43)
or:
d lzj +(w/c)’U=0 (44)
X

15



and

5o
or:
d22G +0’G=0 (46)
dt
These have the general solutions:
U(x)= A sin(@/c)x+ A, cos(w/c)x 47)
and
G(t) = A;sinwt + A, cos ot (48)

The solution U (x) defines the deformation shape, whereas G(¢) defines the motion to be
harmonic in time. The four constants A,A,,A;,A, are to be determined from the
boundary and initial conditions. The natural frequency @ is yet to be determined, and the
expression (a)/ c) is known as the wave number or spatial frequency. The general
solution is finally obtained by:

u(x,1) = (A sin(w/c)x + A, cos(w/c)x)- (A, sin wrt + A, cos or ) (49)
After some algebraic manipulation, the solution may also be expressed as:

y(x,1) = a, sin((@/c)x— art ) +a, cos ((w/c)x— wrt ) + 50
a, sin ((@w/c)x+ ot ) +a, cos((w/c)x+ wt)

16



Example: Fixed-free Rod

As an example, let us investigate the case of a fixed-free rod.

1774

> X, U

Y

y77777

The boundary conditions for this case are:

u(0,1)=0

which results in:

0=A4,-G()

from which we get:

A =0

The general solution then becomes:

u(x,1) = (A sin(w/c)x)-G(r)

At the free end x = L the axial force must vanish P =0 . But

P= EAg—u = EA(w/c)( A cos(w/c)x)-G(t)
x

hence:

0 = EA(w/c)(A cos(wL/c))-G ()

which implies:

cos(wL/c)=0

which is the frequency equation or characteristic equation of the system. Solution of
this equation is:

otfe=(

2n—1

jﬂ' , n=1273,...

Hence the natural frequencies of the system are given by:

a)n:[zn_ljﬁ , n=12.3,...
2 )L

17



and the normal modes of vibration are:

U,(x)=(A, sin(@,/c)x)

The solution of each mode becomes:

u,(x,1)= A, sin((2n—1)zx/2L)-(C,, sinw,t+ D, cos o,r)

In other words, at each natural frequency, there corresponds a mode shape or an
eigenfunction defined by:

U,(x)=A,sin(2n-1zx/2L)

and each n represents a normal mode vibration with a natural frequency

2n—1\rc .
w, =£ > j? where A, are arbitrary constants.

18



Rod with Non-uniform Cross Section

Consider a rod with a non-uniform cross section, as shown below. The equation of

motion can be obtained using the same techniques described previously.

u+%dx
OX|

’_M>‘ >~

P<—EW/ - P+a—§:dx
///,. ‘

Applying Newton’s second law yields:

oP 0’

™ dx = (pA(x)dx) a_t? (51)
which gives:

oP o’u

o A G )

Note that A(x) describes the variation of cross sectional area along the rod axis. Upon

application of Hooke’s law, we obtain:

ou
P=FA(x)—
ox 3
Differentiating with respect to x gives:
oP o© ou
—=—| FA(x)—
ox Gx( ( )axj S

and hence the equation of motion is expressed as:

19



o0u 8(

%)
A(x)— =—| EA(x)—
PA(X) % o (x) j (55)

u
ox
Other Boundary Conditions

Finally, let us consider the case where inertial attachments are appended to the rod, as

shown below.

m

y777777777777777777§

The boundary condition at the fixed end is straight forward. Examination of the boundary
condition at the free end leads us to write the equation of motion of the attached mass

using Newton’s second law. The resulting equation can be expressed as:

ou o*u
EA—(L,t) =—m—(L,t
8x( ) v (L,1) (56)

Torsional Vibration of Rods

Now consider a rod that is subjected to a twisting moment T, as shown below.

20



L~

¥ or
T+—dx
T ox
T
The angle of twist can be expressed as:
Tdx
dd=——-
GJ (57)
where
6 : angle of twist
G : modulus of rigidity
J : polar moment of inertia
We can then write:
oT 0’0
adx =GJ ydx (58)
Applying Newton’s law to the rod element, we obtain:
0’0 0’0
dxGJ —— = pJdx— “
ox® or’ &)
hence
50 G %6
o J ox’ ©0

which is in the form:

21



0’0 1 0%
W ar o

,G
with € = ; representing the wave velocity. It is noted that this equation has exactly

the same form as equation (37) representing the axial vibration of rods, with the

u—>0 » E— G . Thus the evaluating of the natural frequencies, mode shapes and

system response follows directly from the equations previously mentioned.

Vibration of Beams

This section deals with the transverse vibration of beams. The figure shows an elastic
beam drawn in both the undeformed and deformed configurations. Although the figure
suggests a cantilever arrangement, the analysis is suited for arbitrary boundary
conditions. Transverse displacements, measured from the neutral axis at equilibrium, are

designated as w(x,1).

From strength of materials, and adopting the Euler-Bernoulli beam theory, we have:

M =—EI ‘Z:Vf (62)
and:

v :%_f‘j (63)
where

E =Young’s modulus of elasticity [N/m?*]

22



I = Second moment of area [m4]
M =bending moment [Nm]

W = Transverse displacement [m]

V' = Shear force [N]

Consider an infinitesimal beam element as shown in Fig. 15.

V
M+aﬂdx
ox

dx
- - V+8_de
Oox

Figure 15. Forces and moments acting on a beam element.

Neglecting rotary inertia, we can apply Newton’s law in the vertical (transverse) direction

to obtain the equation of motion:

ov o*w
—dx = pAdx 64
ox r ot ©4)
where A is the cross-sectional area. From equations (57) and (58), we have:
2
V:aﬂzg _Elﬁ_vzv (65)
ox Ox ox
For constant £/ we obtain:
ow
V=—El— 66
ox’ (66)
or:
ov o*w
— =—FI 67
ox ox* ©7)

Combining equation (59) with (62) yields the equation that governs the free transverse

vibration of a uniform elastic beam as:

23



o*w(x, 1) O*w(x, 1)
—-FEI =pA
ox* p o

(68)

Solution of the above equation can be emulated using the technique of separation of
variables, as described in previous sections. In this way, the solution can be expressed as:
w(x,t) =W(x)F(t) (69)
Substituting (64) into (63) yields:
EI 1d'W _1d°F

PAW dx*  F dr’

(70)

We observe that the left side of (65) depends only on x, while the right side depends only

on t. Because x and t are independent variables, we conclude that both sides of (65) must

be equal to a constant. Let this constant be —®?. It follows that:
d’F
dar’

+@’'F =0 (71)

which has a solution in the form:

F(t)=C,sinwt + C, cos wt (72)

where C; and C, are constants to be determined from the initial conditions.

Furthermore, we have:

4

d‘;V—p—Aa)zW=0 (73)

dx EI

A
Denotin 4 :p—a)2 we get:
gp I, g

AL LW =0 (74)
dx*

The solution of (69) can be shown to be:
W(x) = A sin fx+ A, cos Bx+ A, sinh Sx+ A, cosh [Sx (75)

where Aj, Ay, Az and A4 are constants to be determined from the boundary conditions.

1.12 Example: Cantilever Beam

24



The boundary conditions for a cantilever beam are given by:

At x=0, W=0, d—W=O
dx
2 3
Ao, TW o AW
dx dx’

Upon substitution into (70), and after some algebraic manipulation, we obtain the

eigenfunctions for a cantilever beam as:

sin B L+sinh S L
cos f,L+cosh B L

W (x)=A, {sin B,x—sinh 8 x — (cos 8,x—cosh ﬂnx)} (76)

where B 1is obtained by solving
cos ffLcosh L =-1 (77)
Equation (72) can be solved numerically to give the eigenvalues BL,[,L,..., 3 L. The

first three solutions can be shown to be:

B, =1.8751/L
B, =4.6941/L
B, =7.8548/L

’EI
Now the natural frequencies can be obtained from @, = /3’ — and the first three
P

EI
o, =(1.8751)° / 7
P
1
PAL'
1

E
E

values are obtained as:

w, =(4.6941
(

)
o, =(7.8548)

2
2

pAL'

Figure 16 shows a typical frequency response plot of a cantilever beam, acted upon by a
harmonic force at its tip. The amplitude of the tip motion is plotted as a function of the
excitation frequency. The peaks occur at the natural frequencies of the system, and the

deformation pattern of the beam (eigenfunctions) at each frequency is plotted at the top.
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Figure 16. Frequency response of a beam.
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